Main Article Content

Abstract

Liraglutide adalah sebuah obat peptida yang digunakan untuk menangani diabetes tipe 2 dan obesitas. Liraglutide diberikan secara injeksi subkutan setiap harinya. Rute injeksi subkutan dapat menyebabkan rasa sakit dan ketidaknyamanan bagi beberapa pasien. Oleh sebab itu, penting untuk meninjau keefektifan dan keamanan rute alternatif ini untuk memastikan bahwa pasien memiliki akses ke pilihan pengobatan yang paling tepat dan nyaman. Rute pemberian alternatif seperti oral dan subkutan yang diperlama pelepasan obatnya, serta topikal, mulai dikembangkan. Artikel review deskriptif ini dibuat dengan metode penelaahan pustaka menggunakan kriteria inklusi dan eksklusi. Beberapa penelitian telah dilakukan untuk mengevaluasi efikasi dan keamanan liraglutide yang diberikan melalui rute alternatif seperti oral dan topikal. Liraglutide yang diberikan melalui rute oral menggunakan teknologi enkapsulasi telah menunjukkan manfaat yang serupa dengan liraglutide yang diberikan melalui injeksi subkutan, ditandai dengan adanya penurunan kadar glukosa darah serta penurunan berat badan yang sebanding. Pemberian liraglutide yang telah dienkapsulasikan melalui injeksi subkutan juga telah diketahui dapat memberikan durasi efek farmakologis yang lebih panjang, sehingga meminimalkan frekuensi pemakaian liraglutide.

Keywords

GLP-1 Liraglutide Sistem penghantaran obat

Article Details

References

  1. Abbas, A., 2021. View of Meta Analysis of the Relationship of Obesity with Type 2 Diabetes Mellitus in Indonesia. Str. J. Ilm. Kesehat.
  2. Akbarzadeh, A., Rezaei-Sadabady, R., Davaran, S., Joo, S.W., Zarghami, N., Hanifehpour, Y., Samiei, M., Kouhi, M., Nejati-Koshki, K., 2013. Liposome: Classification, preparation, and applications. Nanoscale Res. Lett. https://doi.org/10.1186/1556-276X-8-102
  3. Chen, G., Kang, W., Li, W., Chen, S., Gao, Y., 2022. Oral delivery of protein and peptide drugs: From non-specific formulation approaches to intestinal cell targeting strategies. Theranostics. https://doi.org/10.7150/thno.61747
  4. Chen, Y., Luan, J., Shen, W., Lei, K., Yu, L., Ding, J., 2016. Injectable and Thermosensitive Hydrogel Containing Liraglutide as a Long-Acting Antidiabetic System. ACS Appl. Mater. Interfaces. https://doi.org/10.1021/acsami.6b09415
  5. Ding, R., Zhao, Z., He, J., Tao, Y., Zhang, H., Yuan, R., Sun, K., Shi, Y., 2023. Preparation, Drug Distribution, and In Vivo Evaluation of the Safety of Protein Corona Liposomes for Liraglutide Delivery. Nanomaterials 13. https://doi.org/10.3390/nano13030540
  6. Drucker, D.J., 2018. Mechanisms of Action and Therapeutic Application of Glucagon-like Peptide-1. Cell Metab. 27, 740–756. https://doi.org/10.1016/j.cmet.2018.03.001
  7. Federation, I.D., 2021. IDF Diabetes Atlas Tenth edition 2021 [WWW Document]. Int. Diabetes Fed.
  8. Hirenkumar, M., Steven, S., 2012. Poly Lactic-co-Glycolic Acid (PLGA) as Biodegradable Controlled Drug Delivery Carrier. Polymers (Basel). https://doi.org/10.3390/polym3031377.Poly
  9. Icart, L.P., Souza, F.G. de, Lima, L.M.T.R., 2019. Sustained release and pharmacologic evaluation of human glucagon-like peptide-1 and liraglutide from polymeric microparticles. J. Microencapsul. 36, 747–758. https://doi.org/10.1080/02652048.2019.1677795
  10. Ismail, R., Bocsik, A., Katona, G., Gróf, I., Deli, M.A., Csóka, I., 2019. Encapsulation in polymeric nanoparticles enhances the enzymatic stability and the permeability of the glp-1 analog, liraglutide, across a culture model of intestinal permeability. Pharmaceutics 11, 1–13. https://doi.org/10.3390/pharmaceutics11110599
  11. Janardhan, S., Sastry, G., 2014. Dipeptidyl Peptidase IV Inhibitors: A New Paradigm in Type 2 Diabetes Treatment. Curr. Drug Targets. https://doi.org/10.2174/1389450115666140311102638
  12. Jin, Y., Song, Y., Zhu, X., Zhou, D., Chen, C., Zhang, Z., Huang, Y., 2012. Goblet cell-targeting nanoparticles for oral insulin delivery and the influence of mucus on insulin transport. Biomaterials 33, 1573–1582. https://doi.org/10.1016/j.biomaterials.2011.10.075
  13. Juhng, S., Song, J., You, J., Park, J., Yang, H., Jang, M., Kang, G., Shin, J., Ko, H.W., Jung, H., 2023. Fabrication of liraglutide-encapsulated triple layer hyaluronic acid microneedles (TLMs) for the treatment of obesity. Lab Chip. https://doi.org/10.1039/d2lc01084d
  14. Larsen, P.J., 2008. Mechanisms behind GLP-1 induced weight loss. Br. J. Diabetes Vasc. Dis. 8, S34–S41. https://doi.org/10.1177/1474651408100525
  15. Lear, S., Amso, Z., Shen, W., 2019. Engineering PEG-fatty acid stapled, long-acting peptide agonists for G protein-coupled receptors, in: Methods in Enzymology. https://doi.org/10.1016/bs.mie.2019.02.008
  16. Liang, Y., Ding, R., Wang, H., Liu, L., He, J., Tao, Y., Zhao, Z., Zhang, J., Wang, A., Sun, K., Li, Y., Shi, Y., 2022. Orally administered intelligent self-ablating nanoparticles: a new approach to improve drug cellular uptake and intestinal absorption. Drug Deliv. https://doi.org/10.1080/10717544.2021.2023704
  17. Lundgren, J.R., Janus, C., Jensen, S.B.K., Juhl, C.R., Olsen, L.M., Christensen, R.M., Svane, M.S., Bandholm, T., Bojsen-Møller, K.N., Blond, M.B., Jensen, J.-E.B., Stallknecht, B.M., Holst, J.J., Madsbad, S., Torekov, S.S., 2021. Healthy Weight Loss Maintenance with Exercise, Liraglutide, or Both Combined. N. Engl. J. Med. https://doi.org/10.1056/nejmoa2028198
  18. Mezil, S.A., 2021. Complication of Diabetes Mellitus Complication of Diabetes Mellitus. Ann. Rom. Soc. Cell Biol.
  19. Müller, T.D., Finan, B., Bloom, S.R., D’Alessio, D., Drucker, D.J., Flatt, P.R., Fritsche, A., Gribble, F., Grill, H.J., Habener, J.F., Holst, J.J., Langhans, W., Meier, J.J., Nauck, M.A., Perez-Tilve, D., Pocai, A., Reimann, F., Sandoval, D.A., Schwartz, T.W., Seeley, R.J., Stemmer, K., Tang-Christensen, M., Woods, S.C., DiMarchi, R.D., Tschöp, M.H., 2019. Glucagon-like peptide 1 (GLP-1). Mol. Metab. https://doi.org/10.1016/j.molmet.2019.09.010
  20. Muscogiuri, G., Cignarelli, A., Giorgino, F., Prodram, F., Santi, D., Tirabassi, G., Balercia, G., Modica, R., Faggiano, A., Colao, A., 2014. GLP-1: Benefits beyond pancreas. J. Endocrinol. Invest. https://doi.org/10.1007/s40618-014-0137-y
  21. Nauck, M.A., 2011. Incretin-based therapies for type 2 diabetes mellitus: Properties, functions, and clinical implications. Am. J. Med. https://doi.org/10.1016/j.amjmed.2010.11.002
  22. O’Mahony, A.M., Godinho, B.M.D.C., Ogier, J., Devocelle, M., Darcy, R., Cryan, J.F., O’Driscoll, C.M., 2012. Click-modified cyclodextrins as nonviral vectors for neuronal siRNA delivery. ACS Chem. Neurosci. https://doi.org/10.1021/cn3000372
  23. Peterson, G.E., Pollom, R.D., 2010. Liraglutide in clinical practice: Dosing, safety and efficacy. Int. J. Clin. Pract. https://doi.org/10.1111/j.1742-1241.2010.02498.x
  24. Presas, E., Tovar, S., Cuñarro, J., O’Shea, J.P., O’Driscoll, C.M., 2021. Pre-Clinical Evaluation of a Modified Cyclodextrin-Based Nanoparticle for Intestinal Delivery of Liraglutide. J. Pharm. Sci. https://doi.org/10.1016/j.xphs.2020.10.058
  25. Rabiei, M., Kashanian, S., Bahrami, G., Derakhshankhah, H., Barzegari, E., Samavati, S.S., McInnes, S.J.P., 2021. Dissolving microneedle-assisted long-acting Liraglutide delivery to control type 2 diabetes and obesity. Eur. J. Pharm. Sci. 167, 106040. https://doi.org/10.1016/j.ejps.2021.106040
  26. Shamekhi, F., Tamjid, E., Khajeh, K., 2018. Development of chitosan coated calcium-alginate nanocapsules for oral delivery of liraglutide to diabetic patients. Int. J. Biol. Macromol. https://doi.org/10.1016/j.ijbiomac.2018.08.078
  27. Shi, Y., Yin, M., Song, Y., Wang, T., Guo, S., Zhang, X., Sun, K., Li, Y., 2021. Oral delivery of liraglutide-loaded Poly-N-(2-hydroxypropyl) methacrylamide/chitosan nanoparticles: Preparation, characterization, and pharmacokinetics. J. Biomater. Appl. https://doi.org/10.1177/0885328220947889
  28. Shrestha, N., Bouttefeux, O., Vanvarenberg, K., Lundquist, P., Cunarro, J., Tovar, S., Khodus, G., Andersson, E., Keita, Å. V., Gonzalez Dieguez, C., Artursson, P., Préat, V., Beloqui, A., 2018. The stimulation of GLP-1 secretion and delivery of GLP-1 agonists: Via nanostructured lipid carriers. Nanoscale. https://doi.org/10.1039/c7nr07736j
  29. St Clair-Jones, A., Prignano, F., Goncalves, J., Paul, M., Sewerin, P., 2020. Understanding and Minimising Injection-Site Pain Following Subcutaneous Administration of Biologics: A Narrative Review. Rheumatol. Ther. https://doi.org/10.1007/s40744-020-00245-0
  30. Sung, H.W., Sonaje, K., Liao, Z.X., Hsu, L.W., Chuang, E.Y., 2012. PH-responsive nanoparticles shelled with chitosan for oral delivery of insulin: From mechanism to therapeutic applications. Acc. Chem. Res. https://doi.org/10.1021/ar200234q
  31. Wang, J., Yadav, V., Smart, A.L., Tajiri, S., Basit, A.W., 2015. Toward oral delivery of biopharmaceuticals: An assessment of the gastrointestinal stability of 17 peptide drugs. Mol. Pharm. https://doi.org/10.1021/mp500809f
  32. Wang, X., Guo, Y., Qiu, L., Wang, X., Li, T., Han, L., Ouyang, H., Xu, W., Chu, K., 2019. Preparation and evaluation of carboxymethyl chitosan-rhein polymeric micelles with synergistic antitumor effect for oral delivery of paclitaxel. Carbohydr. Polym. https://doi.org/10.1016/j.carbpol.2018.10.096
  33. World Health Organization: WHO and World Health Organization: WHO (2023) “Diabetes,†www.who.int [Preprint]. Available at: https://www.who.int/news-room/fact-sheets/detail/diabetes#:~:text=The%20number%20of%20people%20with,stroke%20and%20lower%20limb%20amputation.
  34. Wu, J., Williams, G.R., Branford-White, C., Li, H., Li, Y., Zhu, L.M., 2016. Liraglutide-loaded poly(lactic-co-glycolic acid) microspheres: Preparation and in vivo evaluation. Eur. J. Pharm. Sci. https://doi.org/10.1016/j.ejps.2016.06.018
  35. Wu, R., Wu, Z., Xing, L., Liu, X., Wu, L., Zhou, Z., Li, L., Huang, Y., 2022. Mimicking natural cholesterol assimilation to elevate the oral delivery of liraglutide for type II diabetes therapy. Asian J. Pharm. Sci. https://doi.org/10.1016/j.ajps.2022.08.002
  36. Xu, Y., Zheng, Y., Wu, L., Zhu, X., Zhang, Z., Huang, Y., 2018. Novel Solid Lipid Nanoparticle with Endosomal Escape Function for Oral Delivery of Insulin. ACS Appl. Mater. Interfaces. https://doi.org/10.1021/acsami.8b00507
  37. Yin, M., Song, Y., Guo, S., Zhang, X., Sun, K., Sun, K., Li, Y., Li, Y., Shi, Y., 2020. Intelligent Escape System for the Oral Delivery of Liraglutide: A Perfect Match for Gastrointestinal Barriers. Mol. Pharm. https://doi.org/10.1021/acs.molpharmaceut.9b01307
  38. You, J., Juhng, S., Song, J., Park, J., Jang, M., Kang, G., Yang, H., Min, H.S., Shin, J., Lee, S., Ko, H.W., Jung, H., 2023. Egg Microneedle for Transdermal Delivery of Active Liraglutide. Adv. Healthc. Mater. https://doi.org/10.1002/adhm.202202473
  39. Zhang, L., Ding, L., Tang, C., Li, Y., Yang, L., 2016. Liraglutide-loaded multivesicular liposome as a sustained-delivery reduces blood glucose in SD rats with diabetes. Drug Deliv. https://doi.org/10.1080/10717544.2016.1180723
  40. Ziebarth, J., Mainardes, R.M., 2023. Preparation, characterization and in vitro evaluation of chitosan nanoparticles for the oral delivery of GLP-1 analog liraglutide. J. Therm. Anal. Calorim. https://doi.org/10.1007/s10973-022-11909-0