Main Article Content
Abstract
N-octyl cinnamic is a compound that has potential as a drug as an antioxidant, anti- inflammatory, but is constrained by the nature of n-octyl cinnamate which is difficult to dissolve in water, causing low bioavailability in the systemic circulation. To overcome this problem, curcumin is formulated in the form of nanoparticles using chitosan polymer, a derivative of chitin which can be obtained from crab and shrimp shell waste. This study aims to synthesize n-octyl cinnamic nanoparticles using a simple coating method using chitosan and sodium alginate and to evaluate the stability of the nanoparticles in vitro. The characterization of nanoparticles that was carried out included adsorption efficiency tests, particle size determination using a Particle Size Analyzer and morphological observations using a Transmission Electron Microscopy (TEM) tool. The antioxidant activity test was carried out to determine the potential of the synthesized compound using DPPH method. The results showed that the nanoparticle formula contained n-octyl cinnamic composition with an adsorption % of 91.02%. The particle size is 68.1 nm based on particle size analyzer testing with an average size of 519.6 . The morphological observations showed that the particles were spherical in shape with an uneven surface. The n-octyl cyanamate/Alginate/Chitosan nanoparticles have antioxidant activity with an EC50 value of 31.57 ppm. This shows that n-octyl siamate/alginate/chitosan nanoparticles have the potential to be developed as an antioxidant.
Keywords: Nanoparticle, Antioxidant, n-Octyl cyanamate/Alginate/chitosan, Synthesis
Article Details
References
- J. D. Guzman, “Natural cinnamic acids, synthetic derivatives and hybrids with antimicrobial activity,†Molecules, vol. 19, no. 12. MDPI AG, pp. 19292–19349, Dec. 2014, doi: 10.3390/molecules191219292.
- T. Vogt, “Phenylpropanoid biosynthesis,†Mol. Plant, vol. 3, no. 1, pp. 2–20, 2010, doi: 10.1093/mp/ssp106.
- S. B. França, P. R. dos S. Correia, I. B. D. de Castro, E. F. da Silva Júnior, M. E. de S. B. Barros, and D.J. da P. Lima, “Synthesis, applications and Structure-Activity Relationship (SAR) of cinnamic acid derivatives: a review,†Res. Soc. Dev., vol. 10, no. 1, p. e28010111691, 2021, doi: 10.33448/rsd- v10i1.11691.
- H. S. Pawar, A. S. Wagh, and A. M. Lali, “Triethylamine: A potential N-base surrogate for pyridine in Knoevenagel condensation of aromatic aldehydes and malonic acid,†New J. Chem., vol. 40, no. 6, pp. 4962–4968, 2016, doi: 10.1039/c5nj03125g.
- L. O. Kadidae, R. Ruslin, L. Nurliana, and L. A. Kadir, “Sintesis Ester Asam Sinamat Menggunakan Variasi Katalis Asam,†J. Pijar Mipa, vol. 15, no. 3, p. 240, 2020, doi: 10.29303/jpm.v15i3.1904.
- P. Volume and D. Ariastika, “Formulasi Nanopartikel Kurkumin dengan Teknik Gelasi Ionik Menggunakan Kitosan , Tripolifosfat dan Natrium Alginat serta Uji Stabilitasnya Secara In Vitro,†vol. 2, no. 1, pp. 17–21.
- L. Pathak, T. Amrutanand, and Y. Agrawal, “Alginate-chitosan coated lecithin core shell nanoparticles for curcumin: Effect of surface charge on release properties and biological activities,†Indian J. Pharm. Educ. Res., vol. 51, no. 2, pp. 270–279, 2017, doi: 10.5530/ijper.51.2.32.
- M. Khatami, H. Q. Alijani, M. S. Nejad, and R. S. Varma, “Core@shell nanoparticles: Greener synthesis using natural plant products,†Appl. Sci., vol. 8, no. 3, pp. 1–17, 2018, doi: 10.3390/app8030411.
- N. R. P. Gofur et al., “The effect of curcumin in core-shell nanoparticle as therapy in radiotherapy- induced hyposalivation,†Syst. Rev. Pharm., vol. 11, no. 10, pp. 367–370, 2020, doi: 10.31838/srp.2020.10.59.
- M. Szczęch and K. Szczepanowicz, “Polymeric core-shell nanoparticles prepared by spontaneous emulsification solvent evaporation and functionalized by the layer-by-layer method,†Nanomaterials, vol. 10, no. 3, pp. 5–8, 2020, doi: 10.3390/nano10030496.
- L. F. Qi, Z. R. Xu, Y. Li, X. Jiang, and X. Y. Han, “In vitro effects of chitosan nanoparticles on proliferation of human gastric carcinoma cell line MGC803 cells,†World J. Gastroenterol., vol. 11, no. 33, pp. 5136–5141, 2005, doi: 10.3748/wjg.v11.i33.5136.
- N. Hidajati and Suyatno, “Sintesis Senyawa Tabir Matahari n-Oktil Para-Metoksi Sinamat Menggunakan Material Awal Etil Para-Metoksi Sinamat Hasil Isolasi dari Rimpang Kencur ( Kaemferia galanga L .) Synthesis of a Sunscreen Compound n-Octyl Para-Menthoxy Cinnamat using Ethyl Para- M,†J. Ilmu Dasar, vol. 9, no. 1, pp. 22–27, 2008.
- M. A. Arshad, U. Khurshid, S. Ahmad, S. Ijaz, F. Rashid, and R. Azam, “Review on methods used to determine Antioxidant activity,†Jezs, vol. 1, no. 1, pp. 41–46, 2014.
- M. A. Oshi et al., “Curcumin Nanocrystal/pH-Responsive Polyelectrolyte Multilayer Core-Shell Nanoparticles for Inflammation-Targeted Alleviation of Ulcerative Colitis,†Biomacromolecules, vol. 21, no. 9, pp. 3571–3581, 2020, doi: 10.1021/acs.biomac.0c00589.
- D. Ariastika, Suryani, Wahyuni, and Rahmapiu, “Formulasi Nanopartikel Kurkumin dengan Teknik Gelasi Ionik Menggunakan Kitosan, Tripolifosfat dan Natrium Alginat serta Uji Stabilitasnya Secara In Vitro,†Maj. Farm., vol. 2, no. 1, p. 18, 2016, [Online]. Available: http://ojs.uho.ac.id/index.php/pharmauho/article/view/3476.
- K. D. P. P. Gunathilake, K. K. D. S. Ranaweera, and H. P. V. Rupasinghe, “In vitro anti-inflammatory properties of selected green leafy vegetables,†Biomedicines, vol. 6, no. 4, pp. 1–10, 2018, doi: 10.3390/biomedicines6040107.
- E. Mutiara, A. Wildan, Y. D. Advistasari, E. Indriyanti, and M. Syukur, “A Green Synthesis Of N-Octyl Cinnamate By Sonochemical Method And Potential As Antioxidant And Antiinflammatory In-Vitro,†vol. 12, no. 9, pp. 14–22, 2022.
- J. Liu, J. Xiao, F. Li, Y. Shi, D. Li, and Q. Huang, Chitosan-Sodium Alginate Nanoparticle as a Delivery System for ε-Polylysine: Preparation, Characterization and Antimicrobial Activity, vol. 91. Elsevier B.V., 2018.
- T. Mudalige, H. Qu, D. Van Haute, S. M. Ansar, A. Paredes, and T. Ingle, Characterization of Nanomaterials: Tools and Challenges. Elsevier Inc., 2018
References
J. D. Guzman, “Natural cinnamic acids, synthetic derivatives and hybrids with antimicrobial activity,†Molecules, vol. 19, no. 12. MDPI AG, pp. 19292–19349, Dec. 2014, doi: 10.3390/molecules191219292.
T. Vogt, “Phenylpropanoid biosynthesis,†Mol. Plant, vol. 3, no. 1, pp. 2–20, 2010, doi: 10.1093/mp/ssp106.
S. B. França, P. R. dos S. Correia, I. B. D. de Castro, E. F. da Silva Júnior, M. E. de S. B. Barros, and D.J. da P. Lima, “Synthesis, applications and Structure-Activity Relationship (SAR) of cinnamic acid derivatives: a review,†Res. Soc. Dev., vol. 10, no. 1, p. e28010111691, 2021, doi: 10.33448/rsd- v10i1.11691.
H. S. Pawar, A. S. Wagh, and A. M. Lali, “Triethylamine: A potential N-base surrogate for pyridine in Knoevenagel condensation of aromatic aldehydes and malonic acid,†New J. Chem., vol. 40, no. 6, pp. 4962–4968, 2016, doi: 10.1039/c5nj03125g.
L. O. Kadidae, R. Ruslin, L. Nurliana, and L. A. Kadir, “Sintesis Ester Asam Sinamat Menggunakan Variasi Katalis Asam,†J. Pijar Mipa, vol. 15, no. 3, p. 240, 2020, doi: 10.29303/jpm.v15i3.1904.
P. Volume and D. Ariastika, “Formulasi Nanopartikel Kurkumin dengan Teknik Gelasi Ionik Menggunakan Kitosan , Tripolifosfat dan Natrium Alginat serta Uji Stabilitasnya Secara In Vitro,†vol. 2, no. 1, pp. 17–21.
L. Pathak, T. Amrutanand, and Y. Agrawal, “Alginate-chitosan coated lecithin core shell nanoparticles for curcumin: Effect of surface charge on release properties and biological activities,†Indian J. Pharm. Educ. Res., vol. 51, no. 2, pp. 270–279, 2017, doi: 10.5530/ijper.51.2.32.
M. Khatami, H. Q. Alijani, M. S. Nejad, and R. S. Varma, “Core@shell nanoparticles: Greener synthesis using natural plant products,†Appl. Sci., vol. 8, no. 3, pp. 1–17, 2018, doi: 10.3390/app8030411.
N. R. P. Gofur et al., “The effect of curcumin in core-shell nanoparticle as therapy in radiotherapy- induced hyposalivation,†Syst. Rev. Pharm., vol. 11, no. 10, pp. 367–370, 2020, doi: 10.31838/srp.2020.10.59.
M. Szczęch and K. Szczepanowicz, “Polymeric core-shell nanoparticles prepared by spontaneous emulsification solvent evaporation and functionalized by the layer-by-layer method,†Nanomaterials, vol. 10, no. 3, pp. 5–8, 2020, doi: 10.3390/nano10030496.
L. F. Qi, Z. R. Xu, Y. Li, X. Jiang, and X. Y. Han, “In vitro effects of chitosan nanoparticles on proliferation of human gastric carcinoma cell line MGC803 cells,†World J. Gastroenterol., vol. 11, no. 33, pp. 5136–5141, 2005, doi: 10.3748/wjg.v11.i33.5136.
N. Hidajati and Suyatno, “Sintesis Senyawa Tabir Matahari n-Oktil Para-Metoksi Sinamat Menggunakan Material Awal Etil Para-Metoksi Sinamat Hasil Isolasi dari Rimpang Kencur ( Kaemferia galanga L .) Synthesis of a Sunscreen Compound n-Octyl Para-Menthoxy Cinnamat using Ethyl Para- M,†J. Ilmu Dasar, vol. 9, no. 1, pp. 22–27, 2008.
M. A. Arshad, U. Khurshid, S. Ahmad, S. Ijaz, F. Rashid, and R. Azam, “Review on methods used to determine Antioxidant activity,†Jezs, vol. 1, no. 1, pp. 41–46, 2014.
M. A. Oshi et al., “Curcumin Nanocrystal/pH-Responsive Polyelectrolyte Multilayer Core-Shell Nanoparticles for Inflammation-Targeted Alleviation of Ulcerative Colitis,†Biomacromolecules, vol. 21, no. 9, pp. 3571–3581, 2020, doi: 10.1021/acs.biomac.0c00589.
D. Ariastika, Suryani, Wahyuni, and Rahmapiu, “Formulasi Nanopartikel Kurkumin dengan Teknik Gelasi Ionik Menggunakan Kitosan, Tripolifosfat dan Natrium Alginat serta Uji Stabilitasnya Secara In Vitro,†Maj. Farm., vol. 2, no. 1, p. 18, 2016, [Online]. Available: http://ojs.uho.ac.id/index.php/pharmauho/article/view/3476.
K. D. P. P. Gunathilake, K. K. D. S. Ranaweera, and H. P. V. Rupasinghe, “In vitro anti-inflammatory properties of selected green leafy vegetables,†Biomedicines, vol. 6, no. 4, pp. 1–10, 2018, doi: 10.3390/biomedicines6040107.
E. Mutiara, A. Wildan, Y. D. Advistasari, E. Indriyanti, and M. Syukur, “A Green Synthesis Of N-Octyl Cinnamate By Sonochemical Method And Potential As Antioxidant And Antiinflammatory In-Vitro,†vol. 12, no. 9, pp. 14–22, 2022.
J. Liu, J. Xiao, F. Li, Y. Shi, D. Li, and Q. Huang, Chitosan-Sodium Alginate Nanoparticle as a Delivery System for ε-Polylysine: Preparation, Characterization and Antimicrobial Activity, vol. 91. Elsevier B.V., 2018.
T. Mudalige, H. Qu, D. Van Haute, S. M. Ansar, A. Paredes, and T. Ingle, Characterization of Nanomaterials: Tools and Challenges. Elsevier Inc., 2018