Main Article Content

Abstract

Education is a basic need for every human being who plays an important role in the future of the nation, because a nation that is said to be advanced can be seen from its good learning system. Successful education is measured by the average number of graduates at various levels of education in various regions. But not all regions are good in the quality of education. One of them is the area in Indonesia, such as the Kapuas district, Central Kalimantan. It is known that in previous years this area lacked improvement in education, causing several areas where people did not go to school or dropped out of school. Many of the problems are caused by economic factors, laziness, lack of motivation about the importance of education, and so on. The previous Covid-19 pandemic was also the reason for the increase in the number of children dropping out of school due to a declining family economy. The number of areas in Kapuas district requires grouping the number of existing villages. The grouping aims to make it easier for the government to pay special attention to areas where education is considered lacking and other purposes are to find out which villages have low levels of education. In grouping, the system applied is data mining using the K-Means Algorithm Clustering method which is processed using rapidminer software. The groupings formed on the education level data of 229 records are 8 clusters where the lowest education villages are stated in (C1) with a total of 33 villages.

Keywords

Clusterization Data Mining K-Means Education.

Article Details

Author Biography

Nurahman Nurahman, Universitas Darwan Ali

Universitas Darwan Ali Sampit

References

  1. Amirullah, I. (2019). Pemetaan Kelompok Kerja Siswa Denan Metode CLlustering K- Means Dan Algoritma Greedy. Jurnal Informatika Dan Rekayasa Perangkat Lunak, 1(2), 94–98.
  2. Butsianto, S., & Saepudin, N. (2020). Penerapan Data Mining Terhadap Minat Siswa Dalam Mata Pelajaran Matematika Dengan Metode K-Means. Jurnal Nasional Komputasi Dan Teknologi Informasi (JNKTI), 3(1). https://doi.org/10.32672/jnkti.v3i1.2008
  3. Juariyah dan basrowi. (2010). Jurnal Ekonomi & Pendidikan, Volume 7 Nomor 1, April 2010. Jurnal Ekonomi & Pendidikan, 7(April), 60. https://journal.uny.ac.id/index.php/jep/article/view/577/434
  4. Kurniawan, R., M. Mukarrobin, M. M., & Mahradianur, M. (2021). Klasterisasi Tingkat Pendidikan Di Dki Jakarta Pada Tingkat Kecamatan Menggunakan Algoritma K-Means. Technologia: Jurnal Ilmiah, 12(4), 234. https://doi.org/10.31602/tji.v12i4.5633
  5. Nurahman, N., & Dwi Aulia, D. (2021). Algoritma K-Means Untuk Melihat Penularan Tertinggi Virus Covid-19 Diseluruh Provinsi Indonesia. Jurnal Ilmiah Betrik, 12(2), 162–168. https://doi.org/10.36050/betrik.v12i2.331
  6. Nurdiawan, O., & Pratama, F. A. (2019). Implementasi Algoritma K-Means Dalam Penentuan Prioritas Rehabilitasi Daerah Aliran Sungai Cipunagara. InfoTekJar (Jurnal Nasional Informatika Dan Teknologi Jaringan), 4(1). https://doi.org/10.30743/infotekjar.v4i1.1633
  7. Oktarian, S., Defit, S., & Sumijan. (2020). Klasterisasi Penentuan Minat Siswa dalam Pemilihan Sekolah Menggunakan Metode Algoritma K-Means Clustering. Jurnal Informasi Dan Teknologi, 2.
  8. Putra, J. W. P., Suganda, E. A., & Intan Purnamasari3. (2022). Penerapan RapidMiner dengan Metode K-Means dalam Penentuan Kluster Ganguan Jaringan WIFI Provider PT . XYZ di Daerah Karawang. Jurnal Informatika Dan Rekayasa Perangkat Lunak, 4(1), 31–35.
  9. Sari, Y. R., Sudewa, A., Lestari, D. A., & Jaya, T. I. (2020). Penerapan Algoritma K-Means Untuk Clustering Data Kemiskinan Provinsi Banten Menggunakan Rapidminer. CESS (Journal of Computer Engineering, System and Science), 5(2), 192. https://doi.org/10.24114/cess.v5i2.18519
  10. Wahyudi, M., Masitha, Saragih, R., & Solikhun. (2020). Data Mining: Penerapan Algoritma K-Means Clustering dan K-Medoids Clustering Oleh Mochamad Wahyudi, Masi.
  11. Wanto, A., Hasan Siregar, M. N., & Dkk. (2021). Data Mining : Algoritma dan Implementasi - Google Books. In Yayasan Kita Menulis (pp. 37-42 (202)). https://www.google.co.id/books/edition/Data_Mining_Algoritma_dan_Implementasi/gAnfDwAAQBAJ?hl=id&gbpv=1&dq=Data+Mining+:+Algoritma+dan+Implementasi&printsec=frontcover