Main Article Content

Abstract

Curriculum changes are needed to adapt education to the times. Since the covid-19 pandemic, face-to-face learning has been suspended. Online learning is an alternative used during a pandemic. This has an impact on learning loss so that the quality of learning decreases. Recovery of learning during the pandemic and post-pandemic Covid-19 is important to reduce the impact of learning loss on students. After the pandemic, the independent curriculum was launched which was a refinement of the 2013 curriculum which had only been implemented in several schools. The subject structure of the Merdeka curriculum for SMA level in Fese E or grade 10, all students get the same subjects. While in Phase F (grades 11 and 12), the subject structure is divided into 2 main groups, namely general subjects and elective subjects. Based on the provisions of the SMKA 2021-2022 curriculum structure, SMA Negeri 1 Kebumen prepares elective subjects (MPP) which are made up of 7 MPP packages. This study uses a clustering technique of student scores using the K-Means algorithm to obtain MPP package recommendations that suit student abilities. For each MPP package, clustering is carried out into 2 clusters with features in the form of predetermined subject scores. The result of this clustering is that each student gets a "yes" or "no" recommendation for each MPP package.

Keywords

data mining unsupervised learning clustering k-means

Article Details

Author Biographies

Gustina Alfa Trisnapradika, Universitas Dian Nuswantoro

Program Studi Teknik Informatika , Fakultas Ilmu Komputer

Wildanil Ghozi, Universitas Dian Nuswantoro

Program Studi Teknik Informatika , Fakultas Ilmu Komputer

References

  1. Aini, Y. N., & Purba, Y. A. (2022). Analisis Penyerapan Tenaga Kerja Dan Program Link & Match Pada Lulusan Sekolah Menengah Kejuruan (Smk) Program Kelautan & Perikanan. Jurnal Kebijakan Sosial Ekonomi Kelautan Dan Perikanan, 12(1), 23. https://doi.org/10.15578/jksekp.v12i1.10339
  2. Bastian, A., Sujadi, H., & Febrianto, G. (2018). PENERAPAN ALGORITMA K-MEANS CLUSTERING ANALYSIS PADA PENYAKIT MENULAR MANUSIA (STUDI KASUS KABUPATEN MAJALENGKA). Jurnal Sistem Informasi (Journal of Information System), 14(1), 26–32.
  3. Ediyanto, Mara, N., & Satyahadewi, N. (2013). Pengklasifikasian Karakteristik Dengan Metode K-Means Cluster Analysis. Buletin Ilmiah Mat. Stat. Dan Terapannya (Bimaster), 02(2), 133–136.
  4. Fayyad, U., Piatetsky-Shapiro, G., & Smyth, P. (1996). From Data Mining to Knowledge Discovery in Databases. American Association for Artificial Intelligence, 17(3), 37–54. https://doi.org/10.1007/978-3-319-18032-8_50
  5. Gantz, J., & Reinsel, D. (2012). THE DIGITAL UNIVERSE IN 2020: Big Data, Bigger Digi tal Shadows, and Biggest Growth in the Far East. Idc, 2007(December 2012), 1–16.
  6. Ks, endro setawan lc, & Syuhodo, M. (n.d.). Struktur Kurikulum Sma 21-22.
  7. Kurniati, P., Kelmaskouw, A. L., Deing, A., Bonin, B., & Haryanto, B. A. (2022). Model Proses Inovasi Kurikulum Merdeka Implikasinya Bagi Siswa Dan Guru Abad 21. Jurnal Citizenship Virtues, 2(2), 408–423. https://doi.org/10.37640/jcv.v2i2.1516
  8. Nurahman, & Aulia, D. D. (2023). Klasterisasi Pendidikan Masyarakat untuk mengetahui Daerah dengan Pendidikan Terendah menggunakan Algoritma K-Means. Jurnal Informatika Dan Rekayasa Perangkat Lunak, 5(1), 38–44.
  9. Shofia Hattarina, Nurul Saila, Adenta Faradila, Dita Refani Putri, & RR.Ghina Ayu Putri. (2022). Implementasi Kurikulum Merdeka Belajar Di Lembaga Pendidikan. Seminar Nasional Sosial Sains, Pendidikan, Humaniora (SENASSDRA), 1, 181–192.
  10. Solehudin, D., Priatna, T., & Zaqiyah, Q. Y. (2022). Konsep Implementasi Kurikulum Prototype. Jurnal Basicedu, 6(4), 7486–7495. https://doi.org/10.31004/basicedu.v6i4.3510
  11. Suyanto. (2019). Data Mining untuk Kalsifikasi dan Klasterisasi Data. Bandung: Informatika Bandung.