Main Article Content

Abstract

This study explores the application of the Transformer model in sentiment analysis of tweets generated by ChatGPT. We used a Kaggle dataset consisting of 217,623 instances labeled as "Good", "Bad", and "Neutral". The Transformer model demonstrated high accuracy (90%) in classifying sentiments, particularly predicting "Bad" tweets. However, it showed slightly lower performance for the "Good" and "Neutral" categories, indicating areas for future research and model refinement. Our findings contribute to the growing body of evidence supporting deep learning methods in sentiment analysis and underscore the potential of AI models like Transformers in handling complex natural language processing tasks. This study broadens the scope for AI applications in social media sentiment analysis.

Keywords

Sentiment Analysis Transformer Model ChatGPT Deep Learning Social Media Analysis

Article Details

References

  1. Ahmed, S. A., MonaLisa, Hussain, M., & Khan, Z. U. (2022). Supervised machine learning for predicting shear sonic log (DTS) and volumes of petrophysical and elastic attributes, Kadanwari Gas Field, Pakistan. Frontiers in Earth Science, 10. https://www.frontiersin.org/articles/10.3389/feart.2022.919130
  2. Alomari, E., Katib, I., Albeshri, A., & Mehmood, R. (2021). COVID-19: Detecting Government Pandemic Measures and Public Concerns from Twitter Arabic Data Using Distributed Machine Learning. International Journal of Environmental Research and Public Health, 18(1). https://doi.org/10.3390/ijerph18010282
  3. Borgman, J., Stark, K., Carson, J., & Hauser, L. (2022). Deep Learning Encoding for Rapid Sequence Identification on Microbiome Data. Frontiers in Bioinformatics, 2. https://www.frontiersin.org/articles/10.3389/fbinf.2022.871256
  4. Ganesh, P., Chen, Y., Lou, X., Khan, M. A., Yang, Y., Sajjad, H., Nakov, P., Chen, D., & Winslett, M. (2021). Compressing Large-Scale Transformer-Based Models: A Case Study on BERT. Transactions of the Association for Computational Linguistics, 9, 1061–1080. https://doi.org/10.1162/tacl_a_00413
  5. Hertina, H., Nurwahid, M., Haswir, H., Sayuti, H., Darwis, A., Rahman, M., Yendra, R., & Hamzah, M. L. (2021). Data mining applied about polygamy using sentiment analysis on Twitters in Indonesian perception. Bulletin of Electrical Engineering and Informatics, 10(4), 2231–2236. https://doi.org/10.11591/eei.v10i4.2325
  6. J. Zheng & L. Zheng. (2019). A Hybrid Bidirectional Recurrent Convolutional Neural Network Attention-Based Model for Text Classification. IEEE Access, 7, 106673–106685. https://doi.org/10.1109/ACCESS.2019.2932619
  7. Kim, A. Y., Ha, J. G., Choi, H., & Moon, H. (2018). Automated Text Analysis Based on Skip-Gram Model for Food Evaluation in Predicting Consumer Acceptance. Computational Intelligence and Neuroscience, 2018, 9293437. https://doi.org/10.1155/2018/9293437
  8. Kulkarni, A., Sthapit, A., Sedhain, A., Bhattarai, B., & Panthee, S. (2021). Texture Classification using Angular and Radial Bins in Transformed Domain. International Journal of Advanced Computer Science and Applications, 12(3). https://doi.org/10.14569/IJACSA.2021.0120301
  9. Mudinas, A., Zhang, D., & Levene, M. (2018). Bootstrap Domain-Specific Sentiment Classifiers from Unlabeled Corpora. Transactions of the Association for Computational Linguistics, 6, 269–285. https://doi.org/10.1162/tacl_a_00020
  10. Picozzi, M., & Iaccarino, A. G. (2021). Forecasting the Preparatory Phase of Induced Earthquakes by Recurrent Neural Network. Forecasting, 3(1), 17–36. https://doi.org/10.3390/forecast3010002
  11. PilaÅ™, L., KvasniÄková Stanislavská, L., & KvasniÄka, R. (2021). Healthy Food on the Twitter Social Network: Vegan, Homemade, and Organic Food. International Journal of Environmental Research and Public Health, 18(7). https://doi.org/10.3390/ijerph18073815
  12. Preto, A. J., Matos-Filipe, P., Mourão, J., & Moreira, I. S. (2022). SYNPRED: prediction of drug combination effects in cancer using different synergy metrics and ensemble learning. GigaScience, 11, giac087. https://doi.org/10.1093/gigascience/giac087
  13. Shafique, M. A., & Marchán, S. S. (2022). Investigating the Impact of Information Sharing in Human Activity Recognition. Sensors, 22(6). https://doi.org/10.3390/s22062280
  14. W. Li & B. Xu. (2020). Aspect-Based Fashion Recommendation With Attention Mechanism. IEEE Access, 8, 141814–141823. https://doi.org/10.1109/ACCESS.2020.3013639
  15. Wang, Z., & Wu, Q. (2018). An Integrated Deep Generative Model for Text Classification and Generation. Mathematical Problems in Engineering, 2018, 7529286. https://doi.org/10.1155/2018/7529286
  16. Wei, L., Song, Y., He, W., Chen, X., Ma, B., Lu, Y., & Zhu, X. (2020). Accuracy Improvement of IOL Power Prediction for Highly Myopic Eyes With an XGBoost Machine Learning-Based Calculator. Frontiers in Medicine, 7. https://www.frontiersin.org/articles/10.3389/fmed.2020.592663