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Abstrak 

Dalam makalah ini, kesalahan radial dari spindle mesin gerinda CNC presisi tinggi yang 

diakibatkan oleh pengaruh gaya unbalance telah diamati. Poros spindle dianggap sebagai 

rotor fleksibel yang didukung oleh dua buah angular contact ball bearing. Metode elemen 

hingga (FEM) telah diadopsi untuk mendapatkan persamaan gerak spindle. Dalam studi ini, 

pertama, frekuensi natural, kecepatan kritis dan amplitudo respon unbalance ditentukan 

terlebih dahulu agar dapat diketahui bagaimana bentuk dari perilaku dinamiknya. Kemudian, 

teknik optimasi desain digunakan untuk meminimalkan perpindahan radial pada spindle yang 

melibatkan parameter seperti diameter poros, karakteristik dinamik bearing, kecepatan kritis 

dan amplitudo respon unbalance, selain itu juga untuk mendapatkan diameter poros, kekakuan 

serta redaman bearing yang seoptimal mungkin. Hasil simulasi numerik telah menunjukkan 

bahwa dengan mengoptimumkan diameter poros, kekakuan bearing dan redaman bearing, 

kesalahan  radial dari spindle dapat dikurangi. Spindle dengan kesalahan radial sekitar 4µm 

dapat dikompensasi dengan kepresisian menjadi 2 µm. 

 

Kata kunci: kesalahan radial, metode elemen hingga, optimum desain, spindle gerinda presisi 

tinggi. 

 
Abstract 

In this paper, radial displacement error of a high precision spindle grinding caused by 

unbalance force was studied. The spindle shaft is considered as a flexible rotor supported by 

two pairs of angular contact ball bearing. The finite element method (FEM) have been adopted 

for obtaining the spindle equation motion. In this study, firstly, natural frequencies, critical 

frequencies and amplitude of unbalance response caused by residual unbalance are 

determined in order to investigate the spindle behaviors. Further more, an optimization design 

technique is conducted to minimize radial displacement of the spindle which considers shaft 

diameters, dynamic characteristics of the bearings, critical frequencies and amplitude of the 

unbalance response, and computes optimum spindle diameter and stiffness and damping of the 

bearings. Numerical simulation results show that by optimizing the shaft diameters, and 

stiffness and damping in the bearings, radial displacement of the spindle can be reduced. A 

spindle about 4 µm radial displacement error, can be compensated with 2 µm accuracy. 

 

Keywords: finite element method, high precision spindle grinding, optimization, radial 

displacement error.  

 

 

INTRODUCTION 

Precision spindles are widely used in high 

precision grinding machine tools. Therefore, a 

higher machining accuracy is achieved by using 

these spindles (Rowe, 1967). The advantage of 

using precision bearing, encouraged machine 

tool engineers to contribute for development in 

technology of these spindle bearings. The 

fundamental methods for designing machine 

tool spindles can be found in Ref. (Lopez de 

Lacalle and Lamikiz, 2009). An important 

function when employing spindles equipped 

with angular contact bearings, arises from error 

correction capability. In this article the radial 

displacement error correction of the spindle was 

studied due to unbalance mass of the grinding 

wheel, which is influenced by spindle diameter 

and the stiffness and damping of angular 

contact bearings. Many papers have reported 

that the system parameters such as the diameter 

of the shaft, stiffness of the shaft and the 

dynamic coefficients of the bearings, the radial 

displacement of the shaft could be reduced 

(Choi and Yang, 2000; Yang et al., 2005; 
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Straub et al., 2007). For example a spindle with 

an elliptic manufacturing error of 20 µin, has a 

radial displacement about 0.2 µin (Levesque, 

1965) when supported by an optimized bearing. 

The high stiffness in the bearings can be 

achieved by increasing of the initial preload 

(Alfares and Elsharkawy, 2003), enabling an 

optimal design to be achieved as in Ref. 

(Aleyaasin et al., 2000). However, further 

investigations show that for an optimal 

performance not only the stiffness parameters 

of the bearing must be increased, but the 

bearing damping also should be adjusted 

(Ozawa, 1994).  

In this paper a high precision spindle shaft is 

modeled as a flexible rotor supported by two 

sets of angular contact ball bearing. Finite 

element method (FEM) is employed to built the 

spindle equation motion in order to describe the 

spindle dynamic. In this study, natural 

frequencies, critical speeds and amplitude of 

unbalance response caused by residual 

unbalance are determined in order to investigate 

the spindle behaviors. 

An optimization design technique is 

implemented in order to minimize the radial 

displacement of the spindle and computes the 

optimum values of spindle diameter and 

stiffness and damping of the bearings which 

considers shaft diameters, dynamic 

characteristics of the bearings, critical 

frequencies and amplitude of the unbalance 

response. Due to the complexity equation of the 

constraint and objective function, describing the 

critical speeds and unbalance response, A 

stochastic search method such as genetic 

algorithm (GA) (Goldberg, 1989) is employed 

for the computation of the diameter, stiffness, 

and damping. The optimum of spindle diameter 

and stiffness and damping of the bearings are 

obtained by raising the critical speeds and 

reducing the unbalance response of the 

assembly. 

The simulation results show that by 

optimizing the shaft diameters, and stiffness 

and damping in the bearings for the optimum 

radial displacement, error correction of spindle 

displacement can be achieved in certain 

operating speed. As a simulation example 

result, an initial design of spindle radial 

displacement has run-out error about 4 µm can 

be compensated with 2 µm. 

METHODS 

Rotating spindle model and theory 

Generally, the spindle-bearing system is 

considered as an assembling of the discrete 

disks and bearings and the spindle segments 

with distributed mass. In order to obtain an 

analysis of the complicated spindle-bearing 

system, the vibrations are calculated  based on 

the procedure of the finite element 

discretization in many literatures (Lalanne and 

Ferraris, 1998; Yamamoto and Ishida, 2001; 

Friswell et al., 2010), the detail of those 

equations will not be derived here and only the 

motion equations are shown below. The system 

equations that describes the behaviour of entire 

spindle-bearing system are formulated by 

taking into account the contributions from all 

elements in the model. The assembled equation 

of motion with Ne elements in the global 

coordinates is of the form (Choi and Yang, 

2000) 

 M q C q K q F
 

    (1) 

where M = (Mt + Mr) is the global mass matrix, 

Mt, Mr are the translational and rotational mass 

matrices, C = (-ΩG +Cb), K = (Kb + Ks) are the 

damping and stiffness matrices, G is a 

gyroscopic matrix, Kb, Cb are the stiffness and 

damping matrices of the bearing, and F is a 

force vector, respectively. 

Analysis of eigenvalue 
In order to obtain the natural frequency of 

system, then eigenvalue must be solved and 

expressed by Eq. (1), the system equation can 

be set as state variable vector. 

0Ax Bx


   (2) 

where the matrices of A, B, and displacement x 

consist of element matrices given as 

0

G GM C
A

I

 
  
 

, 0

0

GK
B

I

 
  

 

,    qx
q

 
  
  

 

For assuming harmonic solution 0

tx x e  

of Eq. (2), the solution of an eigen-value 

problem is 

0( ) 0A B x    (3) 

where λ is the eigenvalue. The eigenvalues are 

ussually complex eigenvalues and conjugate 

roots. 

k k ki     (4) 
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where αk and ωk are the stability factor of 

growth and the k mode of damped frequencies, 

respectively. 

Analysis of steady state unbalance response 
The forces of unbalance mass (F) which is 

shown in Eq. (1) can be expressed as: 

2 i t

uF F e    (5) 

where Fu is independent of time and rotating 

speed. The steady-state response due to 

unbalance mass is considered to be as the form 

i t

uA A e   (6) 

Substituting Eqs. (5) and (6) into (1), the 

equation can be expressed as 

2 2( ) u uK M i C A F      (7) 

By solving Eq. (7) for Au, the steady-state 

response can be obtained. 

Optimization procedure 
The formulation model of optimization for 

radial displacement reduction problem can be 

considered as vibration level optimization 

problem. The optimum values of spindle 

diameter and the stiffness-damping of bearings 

are obtained by raising the critical speeds and 

reducing the unbalance response. For the 

formulation model, the objective function is to 

minimize the spindle mass M (Q) and the 

inequality constraints are subject to the non-

linear function of critical speeds and unbalance 

responses. In this work, spindle diameter, and 

stiffness and damping of the bearings were 

selected as the design variables. As we have 

described above, the formulation model can be 

expressed as follows: 

Minimize mass M (Q)  

Ωm (Q) ≥ Ωm
*
, 

Am (Ωm) ≤ Am
*
,  

QL  ≤  Q  ≤  QU. (8) 

where Ωm and Am (m = number of mode) are 

the new values of critical speeds and unbalance 

responses for the optimum model, and Ωm
*
 and 

Am
*
 are the target constraint values of critical 

speeds and unbalance response for the initial 

model. Therefore, it means that the critical 

speeds, Ωm, should be increased above given 

initial values Ωm
*
, and decreasing the unbalance 

response, Am, below the given values Am
*
. 

Moreover, the upper QU and lower QL bounds 

on the design variables are set due to 

manufacturing constraint and to prevent critical 

stress. 

 

 
 

Figure 1. Flowchart of genetic algorithm 

Table 1. Searching strategy (GA) 

Strategy of input 

parameter 

Description of 

values 

Population size 20 

Scaling function Rank 

Selection function Stochastic uniform 

Elite count 2 

Crossover fraction 80% 

Mutation probability Constrai dependent 

Constraint tolerance 1.10
-6

 

Max number of generation 100 

 

Due to the non-linearity and the complexity 

functions of critical speeds and unbalance 

responses, the derivative of these functions are 

difficult to obtain. Therefore, a stochastic 

search optimization approach without 

derivatives such as genetic algorithm (GA) is 

employed to solve the model of optimization, 

which performed in MATLAB optimization 

Toolbox. 

Table 1 shows the strategy of input 

parameter for performing process of genetic 

algorithm. The flowchart process of genetic 

algorithm for searching the optimum values of 

objective function and design variables are 

described in Fig. 1. 
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RESULTS AND DISCUSSION 
In order to illustrate how the vibration 

level optimization design technique can be used 

to minimize the radial displacement of the 

spindle, a numerical simulation of example was 

done. A schematic of the spindle finite element 

model is shown in Fig. 2. In this case, the 

spindle shaft is modeled into 17 beam elements 

with a node at both ends of the shaft element. 

The mass of grinding wheel and pulley can be 

considered as four elements of the rigid disk 

which are located at node 1, 14, 15 and 16. In 

addition, the two sets of bearing are located at 

node 5 and 12, and the residual unbalance is 

assumed to occur at node 1. 

 

 
 

Figure 2. Discretization model of spindle  

In the case of vibration level optimization, 

diameters of shaft element, dn, (n = element 

number), and stiffness and damping of the 

bearings, Km , Cm , (m = 1,2) are chosen as 

design variables. Thus, the design variable Q 

for the spindle models can be written as 

follows: 

Q = [d1, d2, . , d17, K1, K2, C1, C2] (9) 

Due to the bearing dimension constraint, 

avoiding the critical stress, and the stability of 

optimization process is ensured, then the upper 

and lower values on the diameters of shaft need 

to be set. The lower and upper bounds on the 

diameter of the shaft elements are given by QL 

= 0.017 m and QU = 0.106 m except in the 

vicinity of the bearings there is no change of the 

shaft diameter due to limitations of the bearing 

size. 

For solving the optimization problem, the 

first is to determine the critical speeds in the 

main concern of operating speeds range, and 

then proceed to calculate the magnitude of the 

unbalance response caused by these critical 

speeds. These two things will give an overview 

about the vibration level of system behaviour, 

and the responses with high amplitude chosen 

as a target value of the optimization process in 

which the amplitude needs to be reduced. 

Initial simulation results show that, the 

spindle has two forward modes of the two first 

critical speeds, which are first forward mode 

Ω1F = 11910 rpm and second forward mode Ω2F 

= 21120 rpm, respectively. Due to the first 

forward mode has a small modal damping ratio 

(ζ1F = 0.05), it may lead to a very high response 

peak as illustrated in Fig. 3. The values of 

critical speeds and maximum amplitude 

vibration at the first forward mode are 

Ω1F
(0)

 = 11910 rpm,    A1F
(0)

 = 5.032.10
-5

 m 

For the optimization procedure, by 

substituting the original model values into Eq. 

(8), re-arranged can be written as 

Minimize mass M (Q)  

Ωm (Q) ≥ Ωm
*
 = Ω1F

(0)
, 

Am (Ωm) ≤ Am
*
 = A1F

(0)
,  

0.017  ≤  Q  ≤  0.106. (10) 
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Figure 3. Unbalance response of the spindle  

The numerical values are initial mass m = 

3.6 kg, operating speed Ω = 8000 rpm and 

initial values are d1~d2 = 88 mm, d3~d6 = 70 

mm, d7~d9 = 64.5 mm, d10~d13 = 60 mm, 

d14~d15 = 54.5, d16~d17 = 50.4, K1 = 1.911×10
8
 

N/m, K2 = 2.476×10
8
 N/m, C1 = 191.1×10

2
 

N.s/m and C2 = 247.6×10
2
 N.s/m. The initial 

radial displacement in Eq. (7) is Am = 4.252 µm 

when the allowance residual unbalance (1 

gr.mm) is applied to the grinding wheel. In 

Figs. 4 and 5 the time response of the 

displcement in the y and z axis direction and 

absolute displacement of the spindle 

respectively before optimization are shown. 
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Figure 4. Radial displacement in the y and z 

axis  
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Figure 5. Absolute radial displacement of 

spindle (before optimization)  

The optimum values of the spindle diameter 

and the stiffness and damping of the bearings 

which minimize the radial displacement of the 

spindle are shown in Tables 2 and 3.  

Table 2. Shaft diameter of the spindle 

Diameter  
Initial 

values 

Optimum 

values 

d1~d2 88 88 

d3~d6 70 70 

d7~d9 64.5 60 

d10~d13 60 60 

d14~d15 54.5 54.5 

d16~d17 50.4 17 

Table 3. Characteristics dynamic of the 

bearing 

Bearing  
Initial 

values 

Optimum 

values 

Stiffness (N/m)   

K1 1.911×10
8
 3.797×10

8
 

K2 2.476×10
8
 3.240×10

8
 

Damping (N.s/m)   

C1 191.1×10
2
 218.2×10

2
 

C2 247.6×10
2
 267.7×10

2
 

 

The comparison of unbalance response at 

the grinding wheel due to the residual 

unbalance before and after optimization is 

shown in Fig. 6. It can be seen that the spindle 

diameter and the stiffness and damping of the 

bearings are effective to increase the critical 

speed and to decrease the amplitude of the 

unbalance response at first mode. The total 

shaft mass, 1
st
 critical speed and unbalance 

response for the initial and optimum model 

which is optimized by genetic algorithm (GA) 

are presented in Table 4. 

 
Figure 6. Comparison of unbalance respon  

Table 4. Opimum values computed by GA 

 
Initial 

values 

Optimum 

values 

Total mass of 

shaft (kg) 

3.6 3.36 

1
st
 critical speed 

(rpm) 

11910 14838 

Unbalance 

response (m) 

5.032×10
-5

 3.691×10
-5

 

 

The simulation result shows that, after 

optimizing the spindle shaft, and adjusting the 

bearings to an optimal stiffness and damping, 

which the allowance residual unbalance (1 

gr.mm) is applied to the grinding wheel, 

therefore the maximum radial displacement of 

the spindle for operating speed at 8000 rpm 

would be Am = 2.328 µm as illustrated in Fig. 6. 

In Figs. 7 and 8 the time response of the 

displcement in the y and z axis direction and 

absolute displacement of the spindle after 

optimization are shown respectively. In Fig. 8 

the absolute displacement of the spindle shows 

a great decrease, about 45.2% in the amplitude 

when compared with Fig. 5. This certainly can 

improve the accuracy of the machining process. 
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Figure 7. Radial displacement in the y and z 

axis (after optimization)  
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Figure 8. Absolute radial displacement of 

spindle-bearing (after optimization)  

CONCLUSION 
An optimization design technique such as 

vibration level optimization has been 

implemented successfully in order to minimize 

the radial displacement of the spindle. In this 

study, vibration level optimization model was 

applied to find the spindle diameter and the 

stiffness-damping of the bearings optimum 

values by raising the critical speeds and 

reducing the unbalance response. The objective 

of this optimization problem is only to 

minimize the spindle mass under critical speed 

and unbalance response constraint. Simulation 

results show that the radial displacement of the 

spindle at operating speed 8000 rpm was 

reduced satisfactory, about 45.2% when 

optimizing the spindle shaft, and adjusting the 

dynamic characteristics of the bearing to an 

optimal stiffness and damping. This certainly 

can improve the accuracy of the machining 

process. 
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