METODE K-NEAREST NEIGHBOR UNTUK PERAMALAN KEPADATAN ARUS LALU LINTAS DI GERBANG TOL MANYARAN SEMARANG

Maslikhatus Sho'imah*, Rony Wijanarko dan Nugroho Eko Budiyanto Program Studi Teknik Informatika Fakultas Teknik Universitas Wahid Hasyim Jl. Menoreh Tengah X/22 Sampangan Semarang 50236 *Email: maslikhatus@gmail.com

Abstrak

Lalu lintas memiliki peran yang sangat penting di dalam kehidupan bermasyarakat. Dalam berlalu lintas juga sering muncul masalah dalam kegiatan berlalu lintas, diantaranya adalah kemacetan dan kecelekaan yang disebabkan oleh banyak faktor, salah satu faktor penyebabnya adalah jumlah kendaraan yang melebihi kapasitas jalan. Banyak penelitian yang dilakukan dalam memprediksi arus lalu lintas dengan menggunakan banyak metode seperti Particle Swarm Optimization (Pso), Neurak Netwrok dan masih banyak lagi. Dalam penelitian ini metode yang di gunakan adalah K-nearest neighbor (K-NN) yang mempunyai tingkat akurasi yang cukup tinggi. Salah satu kelemahan dari metode K-NN adalah menggunakan seluruh data training dalam menjalankan klasifikasi yang mengakibatkan pada lamanya saat menjalankan prediksi dan mengurangi tingkat akurasi. Dalam penelitian ini menggunakan metode K-NN dengan tujuan menghasilkan nilai prediksi jumlah kendaraan yang melewati gerbang tol Manyaran pada tahun 2018 dengan jumlah prediksi angka kendaraan pada bulan Januari 949014 Februari 902284, Maret 845307, April 919796, Mei 970834, Juni 1377159, Juli 946759, Agustus 897521, September 939153, Oktober 921456, November 931507, Desember 946750.

Kata Kunci: peramalan, k-nearest neighbor, data training, particle swarm optimization, neurak netwrok

PENDAHULUAN

Lalu lintas memiliki peranan yang kehidupan sangat penting bagi bermasyarakat sehari-hari. Adapun beberapa masalah yang kadang muncul dalam proses berlalu lintas adalah kemacetan yang bisa di sebabkan oleh faktor, banyak salah satu penyebab adalah terjadinya kemacetan jumlah kendaraan yang memadati lalu lintas.

Jumlah kendaraan yang melewati gerbang tol Manyaran pada bulan Januari tahun 2010 sampai dengan Desember 2017 mayoritas adalah kendaraan ringan. Data ini didapatkan dari Dinas Jasa Marga kota semarang dari bulan Januari 2010 sampai dengan Desember 2017.

Data time series adalah himpunan data yang tercatat secara periodik. Seperti himpunan data harian, mingguan, bulanan, atau tahunan. Prediksi data time series dapat digunakan untuk memprediksi jalur lalu lintas dengan menggunakan data yang sudah ada dengan menggunakan perhitungan matematika dan statistika. Jumlah data kendaraan yang masuk ke

gerbang tol Manyaran bulan Januari 2010 sampai Desember 2017 adalah jenis time series yang penghitungannya bersifat bulanan karena pola data yang di gunakan berulang pada kurun waktu tertentu pada bulan Januari 2010 sampai Desember 2017. Dalam penghitungan ini menggunakan algoritma *K-nearest neighbor* (K-NN) karena nilai akurasi yang di hasilkan lebih tinggi di bandingkan dengan algoritma yang lain, dengan tujuan pencarian nilai prediksi jumlah kendaran yang melewati gerbang tol Manyaran Semarang pada tahun berikutnya yaitu tahun 2018

Tujuan Penelitian

Tujuan dari penelitian yang dilakukan adalah untuk memperoleh nilai prediksi jumlah kendaran yang melewati gerbang tol Manyaran Semarang pada tahun 2018 dalam memprediksikan arus lalu lintas jangka pendek di gerbang Tol Manyaran dengan menggunakan metode *K-nearest neighbor* (K-NN).

Manfaat Penelitian

Adapun manfaat dari penelitian ini adalah:

- 1. Memberikan kemudahan bagi petugas dinas jasa marga untuk mengetahui prediksi arus lalu lintas terutama yang melewati gerbang tol Manyaran Semarang.
- 2. Menggetahui model perhitungan arus lalu lintas dalam mempredikdi arus lalu lintas yang akan datang.
- 3. Memberikan sedikit penjelasan tentang metode yang di gunakan.

Kajian Pustaka Tinjauan Pustaka

Penelitian ini dilakukan untuk meningkatkan akurasi dari penelitian sebelumnya dalam memprediksi arus lalu lintas jangka pendek di jalan Semarang Bawen. Penelitian sebelumnya menggunakan Neural Netwrok dengan Genetic Algoritm yang menghasikan RMSE sebesar 106,16 dan pada penelitian ini menggunakan Algoritma Neural Network dan Particle Swarm **Optimization** menghasilkan RMSE yang lebih rendah yaitu 55, 41. Ini menunjukkan kinerja Neural Network dan PSO lebih baik dibandingkan Neural Network dengan GA (Erisa, 2015)

K-nearest Neighbor

Algoritma *K-nearest neighbor* (KNN) sebuah metode merupakan untuk melakukan klasifikasi terhadap objek berdasarkan data terdekat dari tersebut, K-NN juga merupakan algoritma supervised learning dimana hasil klasifikasi data baru berdasarkan pada kategori sebagian besar jarak terdekat menuju K. Klasifikasi dilakukan tanpa memanfaatkan model tetapi berdasarkan memori.(ida fitroh, 2015)

Algoritma ini menghitung berdasarkan jarak minimum dari data baru ke K terdekat yang sudah ditetapkan. Jarak antara data baru dengan data *learning* dihitung dengan cara mengukur jarak antara titik yang mewakili data baru dengan titik

yang mewakili data *learning* dengan rumus *Euclidean Distance*.

D(P-Q) =
$$\sqrt{\sum_{j=1}^{n} (p_i - q_i)^2}$$

Keterengan:

D(P-Q) = Eucludian distance

 p_i = data latih atau data *training*

 q_i = data baru atau data *testing*

Cara kerja algoritma KNN:

- 1. Menentukan jumlah K = jumlah tetangga terdekat
- 2. Menghitung jarak antara data baru dengan semua data *training*
- 3. Menggurutkan data tersebut dan menetapkan tetengga terdekat berdasarkan jarak minimum ke-K
- 4. Memeriksa kelas dari jarak terdekat
- Menggunakan mayoritas sederhana dari kelas tetangga terdekat sebagai nilai prediksi data baru

RMSE

RMSE adalah parameter yang digunakan untuk mengukur keutamaan model setelah diperoleh suatu model. **RMSE** adalah alat pemilihan model berdasarkan pada kesalahan hasil perkiraan. Nilai kesalahan yang muncul menunjukkan seberapa besar perbedaan hasil perkiraan dengan nilai yang akan diperkirakan. RMSE dikenal sebagai standar dari error dari regresi dan didefisnikan sebagai:

RMSE =
$$\sqrt{\frac{\sum_{i=1}^{n} (Y_i - Y_{i+1})^2}{n}}$$

Keterangan:

 Y_i = Nilai data

 $Y_{i+1} = Nilai Waktu/ Tempat$

n = Banyaknya Observasi

Normalisasi *Database*

Proses normalisasi adalah proses pengelompokan data elemen menjadi tabeltabel yang menunjukkan *entity* dan relasinya. Dalam proses normalisasi akan diuji dari beberapa kondisi, apakah terdapat kesulitas padasaat menambah / *insert*, menghapus / *delet*, menghapus / *update*, dan membaca / *retrieve* pada suatu

database. Jika terdapat kesulitan pada pengujian tersebut maka relasinya akan dipecah menjadi beberapa tabel lagi, sehingga diperoleh database yang optimal, sedangkan tujuan dari normalisasi sendiri adalah supaya data yang ada memiliki data interrity yang kuat sehingga kketika kita melakukan relasi antara tabel akan lebih mudah menjaga data intergrity, selainitu normalisasi juga digunakan untuk mengeliminasi anomaly.

Rapid Miner

Rapid miner adalah suatu software yang digunakan untuk mengolah data mining, yang dilakukan oleh rapid miner adalah tentang analisis teks, mengekstrak pola-pola besar data set yang dan mengkombinasikannya dengan mengunakan metode statistika, kecerdasan buatan dan juga database. Tujuan dari analisis teks sendiri adalah pemperoleh informasi yang bekualitas tinggi dari data yang sedang diolah.

METODE

Metode Pengembangan Sistem

Dalam penelitian ini menggunakan perangkat Microsoft Excel untuk pengolahan *dataset*, dan *Rapid Miner* untuk memudahkan proses pengujian dengan mengolah berbagai parameter dengan menggunakan metode *K-Nearest Neighbor* .

HASIL DAN PEMBAHASAN

Ca	ra BULAN	ker MINGGU I	kerja Algoritma			K-nn KETERANGAN		
1	Jan-10	161851	127168	138729	150290			
2	Feb-10	147981	116271	126841		RENGGANG		
3 4	Mar-10	163761 167734	128670 131791	140367 143772		RENGGANG RENGGANG		
5	Apr-10 May-10	176773	138893	151520		LANCAR		
6	Jun-10	183329	144044	157139	170234			
7 8	Jul-10 Aug-10	197845 185546	155450 145786	169582 159039	183714 172292	LANCAR LANCAR		
9	Sep-10	235236	184829	201631	218434	LANCAR		
10	Oct-10 Nov-10	198668 196782	156096 154614	170287 168670	184478 182726	LANCAR LANCAR		
12	Dec-10	209269	164425	179373	194321	LANCAR		
13	Jan-11	200757	157738	172077	186417	LANCAR		
14 15	Feb-11 Mar-11	180848 208687	142095 163968	155013 178874	167931 193780	LANCAR LANCAR		
16	Apr-11	209589	164677	179648	194619	LANCAR		
17 18	May-11 Jun-11	222366 222014	174716 174439	190599 190297		LANCAR LANCAR		
19	Jul-11	236163	185557	202426		LANCAR		
20	Aug-11	234508	184257	201007		LANCAR		
21	Sep-11 Oct-11	253123 224026	198882 176020	216962 192022		LANCAR LANCAR		
23	Nov-11	235060	184690	201480	218270	LANCAR		
24 25	Dec-11 Jan-12	261648 253913	205581 199503	224270 217639		LANCAR LANCAR		
26	Feb-12	243667	191453	208858	226263	LANCAR		
27 28	Mar-12	264318	207678 198982	226558	245438	LANCAR		
29	Apr-12 May-12	253249 271289	213156	217071 232534	251911	PADAT PADAT		
30	Jun-12	271712	213488	232896	252304	PADAT		
31 32	Jul-12 Aug-12	277123 312917	217740 245863	237534 268214	257329 290565	PADAT		
33	Sep-12	264416	207755	226642	245529	LANCAR		
34	Oct-12	272465	214080	233541	253003	PADAT		
35 36	Nov-12 Dec-12	264367 286886	207717 225411	226600 245903	245483 266394	PADAT		
37	Jan-13	273760	215097	234652	254206	PADAT		
38 39	Feb-13 Mar-13	247710 275575	194630 216523	212323 236207	230017 255891	LANCAR PADAT		
40	Apr-13	267929	210515	229653	248791	PADAT		
41	May-13	280652	220513	240559	260606	PADAT PADAT		
42 43	Jun-13 Jul-13	293141 280290	230325 220227	251263 240248	272202 260269			
44	Aug-13	326677	256675	280009	303343	PADAT		
45	Sep-13	259337	203765	222289	240813			
46 47	Oct-13 Nov-13	278977 262592	219196 206322	239123 225079	259050 243835			
48	Dec-13	289944	227814	248524	269234	PADAT		
49 50	Jan-14 Feb-14	257709 222797	202486 175055	220894 190969		LANCAR LANCAR		
51	Mar-14	255955	201107	219390		LANCAR		
52	Apr-14	252295	198231	216252		LANCAR		
53 54	May-14 Jun-14	275658 274533	216588 215705	236278 235314	255968 254924			
55	Jul-14	287412	225824	246354	266883	PADAT		
56 57	Aug-14 Sep-14	263656 185551	207158 145790	225991 159044	244823 172298	LANCAR LANCAR		
58	Oct-14	192409	151179	164922	178666			
59	Nov-14	167672	131742 173723	143719	155695	RENGGANG		
60 61	Dec-14 Jan-15	221102 236894	186131	189516 203052	205309 219973	LANCAR LANCAR		
62	Feb-15	220580	173313	189069	204825	LANCAR		
63	Mar-15 Apr-15	253163 268145	198914 210686	216997 229839	235080 248992			
65	May-15	275430	216409	236083	255756	PADAT		
66 67	Jun-15 Jul-15	260258 336673	204488 264528	223078 288576	241668 312625	LANCAR		
68	Aug-15	258471	203085	221547		LANCAR		
69	Sep-15	244749	192303	209785		LANCAR		
70 71	Oct-15 Nov-15	244601 227725	192187 178926	209658 195192	227130 211459	LANCAR LANCAR		
72	Dec-15	256039	201174	219462	237751	LANCAR		
73	Jan-16 Feb-16	255845 222512	201021 174831	219296 190725	237571 206619	LANCAR		
75	Mar-16	254916	200291	218500	236708	LANCAR		
76 77	Apr-16	247806	194705	212405	230105	LANCAR		
77	May-16 Jun-16	223401 260533	175529 204705	191487 223314	207444 241924	LANCAR PADAT		
79	Jul-16	363606	285691	311663	337634	PADAT		
80 81	Aug-16 Sep-16	279149 264329	219331 207687	239271 226567	259210 245448	PADAT LANCAR		
82	Oct-16	250169	196562	214431	232300	LANCAR		
83	Nov-16	245943	193241	210808	228375			
84 85	Dec-16 Jan-17	276522 268637	217267 211072	237019 230261	256771 249449			
86	Feb-17	250138	196537	214404	232271	LANCAR		
87 88	Mar-17 Apr-17	232053 245814	182327 193139	198902 210697	215478 228256	LANCAR LANCAR		
89	May-17	220536	173279	189031	204784	LANCAR		
90	Jun-17	270883	212837	232185		PADAT		
91 92	Jul-17 Aug-17	381787 270908	299975					
93	Sep-17	262292	206087					
94	Oct-17	256077	201204					
95 96	Nov-17 Dec-17	251093 262553	197287 206297					
97	Jan-18	265724	208783	22776	3 24674	14 LANCAR		
98	Feb-18	252640	198502		8 23459	94 LANCAR		
99 100	Mar-18 Apr-18	236686 257543	185968 202355					
101	May-18	271834	213583	23300	0 25241	17 PADAT		
102	Jun-18 Jul-18	385605 265093	302975 208287					
103	Aug-18	251306	197455					
105	Sep-18	262963	206614	22539	7 24418	0 LANCAR		
106	Oct-18 Nov-18	258008 260822	202720					
108	Nov-18							
	Dec-18	265090	208285	22722	0 24615	ia į f		

10314,51 24896,99 4478,81

4478,81 44560,18 13232,11 75824,49 16378,12 22940,21 18946,33

18946,33 16929,82 40020,63 2571,22 142600,5 130305,1 174655,5 78864,08

50551,5 79798,79 21383,52 5477,78

18537,71 8662,95 128336,3 11866,18 36468,5 36733,06

66990,36 16227,02 16574,44 76335,02

18240,03 30987,71 74741,68 8169,99 176624,4 25205,7 1364,81 26750,32 34328,42

20496 6360,07 26806,36 59230,51 34559,41

Menentukan nilak K, K=17 Hitung *Distance* menggunakan *ecludian distance*

(aist	ance				
	МО	BULAN	DISNTANCE			
ł	1	D108_D1	185092	45	D108_D45	
ı	2	D108_D2	209957,3	46	D108_D46	
Ì	3	D108_D3	181666,3	47	D108_D47	I
[4	D108_D4	174544,5	48	D108_D48	_
[5	D108_D5	158338,6		D108_D49	_
[6	D108_D6	146585,4	50	D108_D50	+
	7	D108_D7	120558,9	51	D108_D51	+
		D108_D8	142610,5	52 53	D108_D52 D108_D53	+
ı	9	D108_D9	53522,82	54	D108_D54	+
ŀ		D108_D10	119084	55	D108_D55	$^{+}$
ŀ	11	D108_D11	122465,4	56	D108_D56	\top
ŀ	12	D108_D12	100078,9	57	D108_D57	
ŀ		D108_D13	115339,1	58	D108_D58	\perp
ł	14	D108_D14	151032	59	D108_D59	\perp
ŀ		D108_D15	101122,6	60	0108_D60	_
ł	16	D108_D16	99504,14	61	D108_D61	+
ł	17	D108_D17 D108_D18	76598,07 77229,08	62	D108_D62	+
ł	19		51861,21	63	D108_D63	+
ł	20	D108_D19 D108_D20	54828	64	D108_D64	+
ł	21	D108_D21	21455,81	65 66	D108_D65 D108_D66	+
ł	22	D108_D22	73621,73	67	D108_D67	+
ł	23	D108_D23	53839,57	68	D108_D68	$^{+}$
ł	24	D108_D24	6170,54	69	D108_D69	\top
ı	25	D108_D25	20039,18	70	D108_D70	\top
ı	26	D108_D26	38407,21	71	D108_D71	
ı	27	D108_D27	1384,51	72	D108_D72	\perp
ı		D108_D28	21228,41	73	D108_D73	_
ı	29	D108_D29	11114,19	74	D108_D74	4
ı	30	D108_D30	11872,71	75	D108_D75	+
	31	D108_D31	21573,28	76 77	D108_D76	+
[32	D108_D32	85745,44	78	D108_D77 D108_D78	+
	33	D108_D33	1208,81	79	D108_D79	+
ı	34	D108_D34	13222,07	80	D108_D80	+
ı	35	D108_D35	1296,66	81	D108_D81	+
ı	36	D108_D36	39077,38	82	D108_D82	\top
ı	37	D108_D37	15544,31	83	D108_D83	\top
ı		D108_D38	31158,89	84	D108_D84	
ŀ	39	D108_D39	18797,74	85	D108_D85	\perp
ŀ	40	D108_D40	5089,24	86	D108_D86	
ŀ	41	D108_D41	27900,94	87	D108_D87	_
ŀ	42	D108_D42	50290,46	88	D108_D88	+
ł	43	D108_D43	27250,35	89	D108_D89	+
ļ		D108_D44	110415,5	90	D108_D90	
ŀ	91	D108_D91	209218,8			
ŀ	92	D108_D92	10431,48			
ŀ	93	D108_D93	5015,94			
ŀ	94	D108_D94	16158,25			
ŀ	95	D108_D95	25095,28			
ł	96	D108_D96	4548,59			
ŀ	97 98	D108_D97	1136,4 22321,77			
ł	98	D108_D98	50923,98			
ł		D108_D99				
ł	100	D108_D100	13530,8 12090,07			
-	101	D108_D101	216063,7			
ł	103	D108_D102 D108_D103	4,52			
ł	103	D108_D104	24712,76			
ł	105	D108_D104	3813,66			
ı	103	AY66 0102	2013,00			

106 D108 D106 107 D108 D107

Urutkan data berdasarkan jarak

NO	BULAN	DISNTANCE	RANGKING
1	D108_D1	235581,5	4
2	D108_D2	260446,8	2
3	D108_D3	232155,9	5
4	D108_D4	225034	8
5	D108_D5	208828,1	9
6	D108_D6	197074,9	11
7	D108_D7	171048,4	17
8	D108_D8	193100,1	12
9	D108_D9	104012,3	38
10	D108_D10	169573,5	18
11	D108_D11	172955	16
12	D108_D12	150568,5	22
13	D108_D13	165828,6	19
14	D108_D14	201521,6	10
15	D108_D15	151612,1	21
16	D108_D16	149993,7	23
17	D108_D17	127087,6	29
18	D108_D18	127718,6	28
19	D108_D19	102350,7	39
20	D108_D20	105317,5	36
21	D108_D21	71945,33	64
22	D108_D22	124111,3	33
23	D108_D23	104329,1	37
24	D108_D24	56660,05	94
25	D108_D25	70528,7	68
26	D108_D26	88896,73	46
27	D108_D27	51874,02	102
28	D108_D28	71717,93	66
29	D108_D29	39375,33	86
30	D108_D30	38616,81	84
31	D108_D31	28916,24	63
32	D108_D32	35255,92	24
33	D108_D33	51698,33	105
34	D108_D34	37267,45	81
35	D108_D35	51786,17	104
36	D108_D36	11412,14	45
37	D108_D37	34945,21	78
38	D108_D38	81648,41	51
39	D108_D39	31691,78	70
40	D108_D40	45400,28	96
41	D108_D41	22588,58	53
42	D108_D42	199,06	42
43	D108_D43	23239,17	54
44	D108_D44	59926,01	20
45	D108_D45	60804,03	89

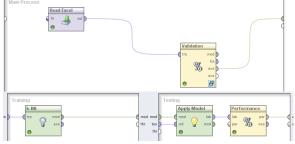
46	D108_D46	25592,52	59
47	D108_D47	54968,33	99
48	D108_D48	5929,34	43
49	D108_D49	63721,63	80
50	D108_D50	126314	31
51	D108_D51	66867,64	75
52	D108_D52	73429,73	61
53	D108_D53	31543,19	69
54	D108_D54	33559,7	73
55	D108_D55	10468,89	44
56	D108_D56	53060,74	101
57	D108_D57	193090	13
58	D108_D58	180794,6	14
59	D108_D59	225145	7
60	D108_D60	129353,6	27
61	D108_D61	101041	41
62	D108_D62	130288.3	26
63	D108_D63	71873,04	65
64	D108_D64	45011,74	95
65	D108.D65	31951,81	71
66	D108_D66	59152,46	90
67	D108_D67	77846,77	15
68	D108_D68	62355,7	85
69	D108_D69	86958.02	48
70	D108_D70	87222,58	47
71	D108_D71	117479,9	34
72	D108_D72	66716,54	76
73	D108_D73	67063,96	74
74	D108_D74	126824,5	30
75	D108.D75	68729,54	72
76	D108_D76	81477,23	52
77	D108_D77	125231.2	32
78	D108_D78	43599,62	91
79	D108_D79	126134,9	6
80	D108_D80	25283,82	57
81	D108_D81	51854,33	103
82	D108_D82	77239,84	56
83	D108_D83	84817,93	50
84	D108_D84	29993.52	67
85	D108_D85	44129,45	93
86	D108_D86	77295,88	55
87	D108_D87	109720	35
88	D108_D88	85048,93	49
89	D108_D89	130367,1	25
90	D108_D90	40103,72	88
91	D108_D91	158729,3	3
92	D108.D92	40058,04	_
93		55505,46	
94	*******	66647,77	77
95		75584,8	
96	D108_D96	44998,18	
97	D108_D97	49353,12	106
98	D108_D98	72811,29	62
99	D108_D99	101413,5	40
100	D108_D100	64020,32	79
101	D108_D101	38399,45	83
102	D108_D102	165574,1	1
103	D108_D103	50485	107
104	D108_D104	75202,28	60
105	D108_D105	54303,18	
106	D108_D106	63187,01	82
107	D108.D107	58141,29	

Tentukan k klasifikasi (k terbaik berdasarkan rangking)

NO	BULAN	DISNTANCE	RANGKING
102	D108_D102	216063,7	1
2	D108_D2	209957,3	2
91	D108_D91	209218,8	3
1	D108_D1	185092	4
3	D108_D3	181666,3	5
79	D108_D79	176624,4	6
59	D108_D59	174655,5	7
4	D108_D4	174544,5	8
5	D108_D5	158338,6	9
14	D108_D14	151032	10
6	D108_D6	146585,4	11
8	D108_D8	142610,5	12
57	D108_D57	142600,5	13
58	D108_D58	130305,1	14
67	D108_D67	128336,3	15
11	D108_D11	122465,4	16
7	D108_D7	120558,9	17

Tentukan klasifikasi menggunakan kategori mayoritas

NO	BULAN	DISNTANCE	RANGKING	KETERANGAN
102	D108, D102	216063,7	1	PADAT
2	D108, D2	209957,3	2	RENGGANG
91	D108, D91	209218,8	3	PADAT
1	D108, D1	185092	4	RENGGANG
3	D108, D3	181666,3	5	RENGGANG
79	D108, D79	176624,4	6	PADAT
59	D108, D59	174655,5	7	RENGGANG
4	D108, D4	174544,5	8	RENGGANG
5	D108, D5	158338,6	9	LANCAR
14	D108, D14	151032	10	LANCAR
6	D108, D6	146585,4	11	LANCAR
8	D108, D8	142610,5	12	LANCAR
57	D108, D57	142600,5	13	LANCAR
58	D108, D58	130305,1	14	LANCAR
67	D108, D67	128336,3	15	PADAT
11	D108, D11	122465,4	16	LANCAR
7	D108, D7	120558,9	17	LANCAR


Karena Mayoritas padat maka hasil klasifikasi Desember 2018 adalah LANCAR

Pengolahan Data Menggunakan Rapidminer

Data yang di masukan di rapidminer adalah data kendaraan yang melewati gerbang tol manyaran dari januari 2010 sampai desember 2017 dan data prediksi di tahun 2018. Kemudian data diubah menjadi 7 periode karena metode k-nn menggunakan data deret waktu, data akan di normalisasikan dengan cara membagi jumlah kendaraan dengan nilai 10000 supaya data yang diolah tidak terlalu besar dan mempengaruhi hasil prediksi dan mendapatkan nilai error yang lebih rendah

Bulan.	xt7	xt6	xt5	xt4	xt3	xt2	xt1	×t.
Dec-18	97.0834	137.7159	94.6759	89.7521	93.9154	92.1456	93.1508	9
Nov-18	91.9796	97.0834	137.7159	94.6759	89.7521	93.9154	92.1456	93
Oct-18	84.5308	91.9796	97.0834	137.7159		89.7521	93.9154	92
Sep-18	90.2284	84.5308	91.9796		137.7159	94.6759	89.7521	93
Aug-18	94.9014	90.2284	84.5308		97.0834			_
Jul-18	95.7689	94.9014	90.2284	84.5308	91.9796	97.0834	137.7159	_
Jun-18	89.6759	95.7689	94.9014	90.2284	84.5308	91.9796	97.0834	13
May-18	91.4562	89.6759	95.7689	94.9014	90.2284	84.5308	91.9796	97
Apr-18	93.6758	91.4562	89.6759	95.7689	94.9014	90.2284	84.5308	91
Mar-18	96.753	93.6758	91.4562	89.6759	95.7689	94.9014	90.2284	84
Feb-18	136.3524	96.753	93.6758	91.4562	89.6759	95.7689	94.9014	90
Jan-18	96.7439	136.3524	96.753	93.6758	91.4562	89.6759	95.7689	94
Dec-17	78.763	96.7439	136.3524		93.6758			95
Nov-17	87.7906	78.763	96.7439	136.3524	96.753	93.6758	91.4562	89
Oct-17	82.876	87.7906	78.763	96.7439	136.3524	96.753	93.6758	91
Sep-17	89.335	82.876	87.7906	78.763	96.7439	136.3524	96.753	93
Aug-17	95.942	89.335	82.876	87.7906	78.763	96.7439	136.3524	9
Jul-17	98.7579	95.942	89.335	82.876	87.7906	78.763	96.7439	13
Jun-17	87.8366	98.7579	95.942	89.335	82.876	87.7906	78.763	96
May-17	89.3462	87.8366	98.7579	95.942	89.335	82.876	87.7906	7
Apr-17	94.4031	89.3462	87.8366	98.7579	95.942	89.335	82.876	87
Mar-17	99.6961	94.4031	89.3462	87.8366	98.7579	95.942	89.335	8
Feb-17	129.8594	99.6961	94.4031	89.3462	87.8366	98.7579	95.942	8
Jan-17	96.0475	129.8594	99.6961	94.4031	89.3462	87.8366	98.7579	9
Dec-16	79.7861	96.0475	129.8594	99.6961	94.4031	89.3462	87.8366	98
Nov-16	88.5021	79.7861	96.0475	129.8594	99.6961	94.4031	89.3462	87
Oct-16	91.0415	88.5021	79.7861	96.0475	129.8594	99.6961	94.4031	89
Sep-16	79.4687	91.0415	88.5021	79.7861	96.0475	129.8594	99.6961	94
Aug-16	91.3733	79.4687	91.0415	88.5021	79.7861	96.0475	129.8594	99
Jul-16	91.4425	91.3733	79.4687	91.0415	88.5021	79.7861	96.0475	12
Jun-16	81.3302	91.4425	91.3733	79.4687	91.0415	88.5021	79.7861	96
May-16	87.3576	81.3302	91.4425	91.3733	79.4687	91.0415	88.5021	79
Apr-16	87.4103	87.3576	81.3302	91.4425	91.3733	79.4687	91.0415	88
Mar-16	92.3112	87.4103	87.3576	81.3302	91.4425	91.3733	79.4687	91
Feb-16	120.2402	92.3112	87.4103	87.3576	81.3302	91.4425	91.3733	79
Jan-16	92.9493	120.2402	92.3112	87.4103	87.3576	81.3302	91.4425	91
Dec-15	98.3678	92.9493	120.2402	92.3112	87.4103	87.3576	81.3302	91
Nov-15	95.7662	98.3678	92.9493	120.2402	92.3112	87.4103	87.3576	81
Oct-15	90.4153	95.7662	98.3678	92.9493	120.2402	92.3112	87.4103	87
Sep-15	78.7787	90.4153	95.7662	98.3678	92.9493	120.2402	92.3112	87

4.3 Proses pada aplikasi rapidminer

Hasil Prediksi RMSE

Metode yang digunakan dalam pengujian ini adalah metode K-NN. Dan yang digunakan adalah data multivariat. Data tersebut adalah data kendaraan yang melewati Tol Manyaran telah di ubah menjadi yang multivariate dari data sebelumnya adalah data univariat yang di dapat. Kemudian data dinormalisasikan menjadi beberapa periode yaitu 1 periode sampai dengan 7 periode sebelumnya. Masing-masing periode dipilih berdasarkan arsitektur terbaik yang menggunakan metode K-NN.

1 periode – 7 periode

1 periode 2 periode 3 periode

K	RMSE	K	RMSE
1	16.076	1	18.457
2	8.511	2	14.193
3	9.178	3	12.12
4	9.696	4	10.764
5	9.616	5	10.362
6	9.706	6	10.187
7	9.769	7	10.053
8	9.992	8	9.688
9	10.158	9	9.661
10	10.427	10	9.57
K	RMSE		

K	RMSE
1	12.003
2	10.66
3	10.735
4	10.887
5	10.967
6	11.353
7	10.966
8	10.835
9	10.7
10	10.678

4 periode		5 periode	5 periode		6 periode	
К	RMSE	K	RMSE	K	RMSE	
	13,489	1	14.073	1	11.885	
1	9.777	2	10.661	2	9.347	
2	10.284	3	10.776	3	10.356	
3	10.472	4	11.301	4	9.796	
4	10.472	5	11.979	5	9.777	
5		6	12.01	6	9.915	
6	10.78		12.084		9.916	
7	10.879	7		7		
8	11.167	8	11.167	8	9.952	
9	10.94	9	12.351	9	10.179	
	44.007		10.450		10 100	

7 periode				
K		RMSE		
	1	16.157		
	2	14.97		
	3	15.644		
	4	15.811		
	5	15.379		
	6	15.272		
	7	15.285		
	8	15.062		
	9	15.209		
	10	15.12		

Berikut ini adalah rangkuman dari hasil uji coba arsitektur terbaik pada setiap periode.

PERIODE	K	RMSE
XT1	2	8.511
XT 2	10	9.57
XT3	9	10.7
XT4	2	9.777
XT5	2	10.661
XT 6	2	9.347
XT7	2	14.97

KESIMPULAN

Prediksi jalur lalu lintas jangka pendek digerbang tol Manyaran Semarang yang di mulai dari tahun 2010-2017 dengan menggunakan metode *K-Nearest Neighbor*

(K-NN) dengan hasil prediksi tahun 2018 angka kenaikan pada bulan. Januari 949014 Februari 902284, Maret 845307, April 919796, Mei 970834, Juni 1377159, Juli 946759, Agustus 897521, September 939153, Oktober 921456, November 931507, Desember 946750. dan mengunakan aplikasi Microsoft Excel dan menggunakan aplikasi Rapid Miner dapat menghasilkan nilai RMSE yang cukup rendah dengan menggunakan *K-Flod validation* sebanyak 10 kali dengan nilai RMSE terendah pada period ke enam/ xt 6 dengan nilai k=4 menghasilkan nilai error yang rendah yaitu 7.924

DAFTAR PUSTAKA

- Erisa Adyati Rahmasari. "Peningkatan Akurasi Menggunakan Neural Network Dan Particle Swarm Optimization (Pso) Dalam Prediksi Arus Lalu Lintas Jangak Pendek. Pasca Sarjana Universitas Dian Nuswantoro Semarang, 2015.
- Ida Fitroh ," Metode K-Nearest Neighbor Berbasis Particle Swarm Optimization untuk peramalan kepadatan arus lalu lintas" Pasca Sarjana Universitas Dian Nuswantoro Semarang, 2015.
- Lun Zhang, Qiuchen Liu, Wenchen Yang, Nai Wei, Decun Dong An, "Improved K-nearest Neighbor Model for Shortterm Traffic Flow Prediction", 13th COTA International Conference of Transportation Professionals (CICTP 2013), 2013.
- Manual Kapasitas Jalan Indonesia (MKJI).: Dirjen Bina Marga, 1997.
- Undang-undang republik Indonesia No. 14 Lalu Lintas dan Angkutan Jalan. Indonesia: Presiden Republik Indonesia, 1992.