Investigasi Model Numerik pada Simulasi Heat Sink Sirip Lurus Dengan Memvariasikan Jumlah Grid, Model Viscous dan Metode Pemecahan dengan Pendinginan Konveksi Bebas
DOI:
https://doi.org/10.36499/jim.v20i1.10457Keywords:
Grid, heat sink, fin, method, SFHS, Sudut oblique, viscous.Abstract
Heat sink merupakan alat penyerap kalor yang banyak digunakan untuk mendinginkan komponen-komponen elektronika. Saat ini metoda numerik menjadi salah satu opsi untuk menyelesaikan masalah perpindahan kalor karena memiliki keuntungan yaitu lebih cepat, murah, dan mudah. Riset ini bertujuan untuk mencari model simulasi terbaik pada straight fin heat sink (SFHS) yang diharapkan memiliki laju pendingan yang lebih tinggi dibandingkan dengan yang lainnya yang banyak dijumpai dalam praktek. Dalam penelitian ini telah dilakukan perhitungan numerik dengan variabel geometri Lch=150 mm, Whs=75mm, Wfin=3 mm, Wch=9 mm, H=50 mm, dan Pfin=2,7 mm yang mengalami perpindahn kalor konveksi bebas. Parameter yang divariasikan dalam riset ini adalah jumlah grid, model viscous, dan metoda pemecahan persamaan, dan arah gravitasi udara. Perhitungan dilakukan dengan metoda volume hingga dengan menggunakan program aplikasi numerik Ansys Fluent. Hasil simulasi menunjukkan bahwa laju pendinginan SFHS dapat ditingkatkan dengan menggunakan variasi jumlah grid sebesar 931.900 dengan model viscous k-ε Realizable dan metoda pemecahan coupled. Terbukti bahwa metode tersebut menghasilkan penurunan temperature dengan peningkatan nilai koefisien perpindahan panas. Oleh karena itu dapat disimpulkan bahwa model simulasi yang didapatkan ini dapat digunakan untuk melakukan perhitungan-perhitungan numerik selanjutnya.
References
A. Abbas and C. C. Wang., (2020). “Augmentation of natural convection heat sink via using displacement design,†Int. J. Heat Mass Transf., vol. 154, pp. 1-14. doi:10.1016/j.ijheatmasstransfer.2020.119757.
A. K. Rao and V. Somkuwar., (2021). “Heat transfer of a tapered fin heat sink under natural convection,†Mater. Today Proc., vol. 46, pp. 7886–7891. doi: 10.1016/j.matpr.2021.02.565.
A. M. A. Mageeth, S. J. Park, M. Jeong, W. Kim, and C. Yu., (2019). “Planar-type thermally chargeable supercapacitor without an effective heat sink and performance variations with layer thickness and operation conditions,†Appl. Energy, vol. 268, pp. 1-9. doi: 10.1016/j.apenergy.2020.114975.
A. Moradikazerouni, M. Afrand, J. Alsarraf, S. Wongwises, A. Asadi, and T. K. Nguyen., (2019). “Investigation of a computer CPU heat sink under laminar forced convection using a structural stability method,†Int. J. Heat Mass Transf., vol. 134, pp. 1218–1226. doi:10.1016/j.ijheatmasstransfer.2019.02.02.
B. Kanargi, J. M. S. Tan, P. S. Lee, and C. Yap., (2020). “A tapered inlet/outlet flow manifold for planar, air-cooled oblique-finned heat sink,†Appl. Therm. Eng., vol. 174, pp. 1-18. doi: 10.1016/j.applthermaleng.2020.115250.
C. H. Huang and W. Y. Chen., (2022). “A natural convection horizontal straight-fin heat sink design problem to enhance heat dissipation performance,†Int. J. Therm. Sci., vol. 176, pp 1-13. doi: 10.1016/j.ijthermalsci.2022.107540.
D. Jung, H. Lee, D. Kong, E. Cho, K. W. Jung, C. R. Kharangate, M. Iyengar, C. Malone, M. Asheghi, K. E. Goodson, H. Lee., (2021). “Thermal design and management of micro-pin fin heat sinks for energy-efficient three-dimensional stacked integrated circuits,†Int. J. Heat Mass Transf., vol. 175, pp. 1-17. doi:10.1016/j.ijheatmasstransfer.2021.121192.
D. Kong, Y. Kim, M. Kang, E. Song, Y. Hong, H. S. Kim, K. J. Rah, H. G. Choi, D. Agonafer, H. Lee., (2021). “A holistic approach to the thermal-hydraulic design of 3D manifold microchannel heat sinks for energy-efficient cooling,†Case Stud. Therm. Eng., vol. 28, pp. 1-13. doi: 10.1016/j.csite.2021.101583.
F. Han, H. Guo, and X. Ding., (2021). “Design and optimization of a liquid-cooled heat sink for a motor inverter in electric vehicles.†Appl. Energy, vol. 291, pp. 1-14. doi:10.1016/j.apenergy.2021.116819.
H. Hassan and N. Y. A. Shafey., (2021). “3D study of convection-radiation heat transfer of electronic chip inside enclosure cooled by a heat sink,†Int. J. Therm. Sci., vol. 159, pp. 1-15, September 2021. doi: 10.1016/j.ijthermalsci.2020.106585.
H. Sait., (2022). “Cooling a plate lithium-ion battery using a thermoelectric system and evaluating the geometrical impact on the performance of heatsink connected to the system,†J. Energy Storage, vol. 52, pp. 1-14. doi: 10.1016/j.est.2022.104692.
H. Zu, W. Dai, Y. Li, K. Li, and J. Li., (2021). “Analysis of enhanced heat transfer on a passive heat sink with high-emissivity coating,†Int. J. Therm. Sci., vol. 166, pp. 1-10. doi: 2021.10.1016/j.ijthermalsci.2021.10697.
I. El Ghandouri, A. El Maakoul, S. Saadeddine, and M. Meziane., (2020). “Design and numerical investigations of natural convection heat transfer of a new rippling fin shape,†Appl. Therm. Eng., vol. 178, pp. 1-14. doi: 10.1016/j.applthermaleng.2020.115670.
J. G. Song, J. H. Lee, and I. S. Park., (2021). “Enhancement of the cooling performance of naval combat management system using heat pipe,†Appl. Therm. Eng., vol. 188, pp. 1-12. doi: 10.1016/j.applthermaleng.2021.116657.
K. Zhang, M. J. Li, F. L. Wang, and Y. L. He., (2020). “Experimental and numerical investigation of natural convection heat transfer of W-type fin arrays,†Int. J. Heat Mass Transf., vol. 152, pp. 1-13. doi: 10.1016/j.ijheatmasstransfer.2020.119315.
M. Ghaneifar, H. Arasteh, R. Mashayekhi, A. Rahbari, R. B. Mahani, and P. Talebizadehsardari., (2020). “Thermohydraulic analysis of hybrid nanofluid in a multilayered copper foam heat sink employing local thermal non-equilibrium condition: Optimization of layers thickness,†Appl. Therm. Eng., vol. 181, pp. 1-13. doi: 10.1016/j.applthermaleng.2020.115961.
M. R. Attar, M. Mohammadi, A. Taheri, S. Hosseinpour, M. P. Fard, M. H. Sabzevar, A. Davoodi,. (2020). “Heat transfer enhancement of conventional aluminum heat sinks with an innovative, cost-effective, and simple chemical roughening method,†Therm. Sci. Eng. Prog., vol. 20, pp. 1-10. doi: 10.1016/j.tsep.2020.100742.
R. C. Adhikari, D. H. Wood, and M. Pahlevani., (2020). “An experimental and numerical study of forced convection heat transfer from rectangular fins at low Reynolds numbers,†Int. J. Heat Mass Transf., vol. 163, pp. 1-12. doi: 10.1016/j.ijheatmasstransfer.2020.120418.
Z. Soleymani, M. Rahimi, M. Gorzin, and Y. Pahamli., (2020). “Performance analysis of hotspot using geometrical and operational parameters of a microchannel pin-fin hybrid heat sink,†Int. J. Heat Mass Transf., vol. 159, pp. 1-18, June 2020. doi: 10.1016/j.ijheatmasstransfer.2020.120141.
Downloads
Published
Issue
Section
License
Authors who publish with this journal agree to the following terms:
The journal allow the authors to hold the copyright without restrictions and allow the authors to retain publishing rights without restrictions.
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
This work is licensed under a Creative Commons Attribution 4.0 International License.