Optimasi Kinerja Hidraulik pada Sistem Aliran Air dengan Teknologi T-Joint Pipa PLA dan Piston Cair Terkompresi
DOI:
https://doi.org/10.36499/jim.v20i1.11195Keywords:
T-joint, kontrol Aliran, algoritma penjadwalan, piston cair, tekanan hidrostatisAbstract
Penelitian ini mengembangkan sistem aliran air efisien menggunakan sambungan T pipa PLA dan teknologi piston cairan terkompresi untuk mengatur tekanan. Konfigurasi ini mencakup dua saluran masuk: satu sejajar dengan saluran keluar dan satu lagi miring pada sudut 45 derajat. Prinsip tekanan hidrostatis memainkan peran kunci dalam meningkatkan kecepatan dan konsistensi aliran air. Metode penelitian melibatkan pengaturan kondisi pada berbagai inlet dan outlet, dengan fokus pada pengaturan tekanan dan kecepatan aliran. Hasil menunjukkan peningkatan kecepatan aliran hingga 50.2 m/s dan tekanan maksimum 466.15 kPa, yang menunjukkan distribusi tekanan yang merata dan respons sistem yang stabil terhadap perubahan input. Implementasi strategi pengaturan dan algoritma penjadwalan kompresor efektif dalam mencapai kinerja hidraulik optimal, memungkinkan pengelolaan aliran air yang stabil dan efisien.
References
Ahmad, N. N., Ghazali, N. N., Abdul Rani, A. T., Othman, M. H., Kee, C. C., Jiwanti, P. K., RodrÃguez-Gómez, A., & Wong, Y. H. (2023). Finger-Actuated Micropump of Constant Flow Rate without Backflow. In Micromachines (Vol. 14, Issue 4). https://doi.org/10.3390/mi14040881
Alamirew, T., Balaji, V., & Gabbeye, N. (2017). Comparison of PID controller with model predictive controller for milk pasteurization process. Bulletin of Electrical Engineering and Informatics, 6(1), 24–35. https://doi.org/10.11591/eei.v6i1.575
Andino, M. Y., Lin, J. C., Roman, S., Graff, E. C., Gharib, M., Whalen, E. A., & Wygnanski, I. J. (2019). Active Flow Control on Vertical Tail Models. AIAA Journal, 57(8), 3322–3338. https://doi.org/10.2514/1.J057876
Cox, R., Salonitis, K., Rebrov, E., & Impey, S. A. (2022). Revisiting the Effect of U-Bends, Flow Parameters, and Feasibility for Scale-Up on Residence Time Distribution Curves for a Continuous Bioprocessing Oscillatory Baffled Flow Reactor. Industrial & Engineering Chemistry Research, 61(30), 11181–11196. https://doi.org/10.1021/acs.iecr.2c00822
Crowe, C. T. (2010). Engineering Fluid Mechanics 9th Edition Binder Ready Version with Binder Ready Survey Flyer Set. John Wiley & Sons, Incorporated. https://books.google.co.id/books?id=g0qiuAAACAAJ
Davoodi, S., Al-Shargabi, M., Wood, D. A., Rukavishnikov, V. S., & Minaev, K. M. (2024). Synthetic polymers: A review of applications in drilling fluids. Petroleum Science, 21(1), 475–518. https://doi.org/https://doi.org/10.1016/j.petsci.2023.08.015
Debuysschère, R., Siconolfi, L., Rimez, B., Gallaire, F., & Scheid, B. (2021). Influence of the inlet velocity profile on the flow stability in a symmetric channel expansion. Journal of Fluid Mechanics, 909, A13. https://doi.org/DOI: 10.1017/jfm.2020.912
Engeda, A., Kim, Y., Aungier, R., & Direnzi, G. (2003). The Inlet Flow Structure of a Centrifugal Compressor Stage and Its Influence on the Compressor Performance . Journal of Fluids Engineering, 125(5), 779–785. https://doi.org/10.1115/1.1601255
Granger, R. A. (2012). Fluid Mechanics. Dover Publications. https://books.google.co.id/books?id=VWG8AQAAQBAJ
Hansen, L. D., Veng, M., & Durdevic, P. (2021). Compressor Scheduling and Pressure Control for an Alternating Aeration Activated Sludge Process—A Simulation Study Validated on Plant Data. In Water (Vol. 13, Issue 8). https://doi.org/10.3390/w13081037
Lampunio, L., Duan, Y., Eaton, M. D., & Bluck, M. J. (2022). Mean Flow, Turbulent Structures, and SPOD Analysis of Thermal Mixing in a T-Junction with Variation of the Inlet Flow Profile. In Energies (Vol. 15, Issue 22). https://doi.org/10.3390/en15228415
Lu, K., Sultan, I. A., & Phung, T. H. (2023). A Literature Review of the Positive Displacement Compressor: Current Challenges and Future Opportunities. In Energies (Vol. 16, Issue 20). https://doi.org/10.3390/en16207035
Parsi, M., Kara, M., Agrawal, M., Kesana, N., Jatale, A., Sharma, P., & Shirazi, S. (2017). CFD simulation of sand particle erosion under multiphase flow conditions. Wear, 376–377, 1176–1184. https://doi.org/https://doi.org/10.1016/j.wear.2016.12.021
Saghi, H. (2016). The pressure distribution on the rectangular and trapezoidal storage tanks’ perimeters due to liquid sloshing phenomenon. International Journal of Naval Architecture and Ocean Engineering, 8(2), 153–168. https://doi.org/https://doi.org/10.1016/j.ijnaoe.2015.12.001
Shaheed, R., Yan, X., & Mohammadian, A. (2021). Review and Comparison of Numerical Simulations of Secondary Flow in River Confluences. In Water (Vol. 13, Issue 14). https://doi.org/10.3390/w13141917
Shishesaz, M., & Hosseini, M. (2020). Effects of joint geometry and material on stress distribution, strength and failure of bonded composite joints: an overview. The Journal of Adhesion, 96(12), 1053–1121. https://doi.org/10.1080/00218464.2018.1554483
Suherman Mukti, Erzi Agson Gani, Maykel Manawan, & Ansori. (2023). Determining The Ratio Of Pressure And Compressor Air Mass Flow Rate To Generate Thrust. International Journal Of Humanities Education and Social Sciences, 2(6 SE-Social Science). https://doi.org/10.55227/ijhess.v2i6.523
Xu, W., Jin, Y., Zhu, L., & Li, Z. (2021). Performance Analysis of the Technology of High-Temperature Boiler Feed Water to Recover the Waste Heat of Mid-Low-Temperature Flue Gas. ACS Omega, 6(40), 26318–26328. https://doi.org/10.1021/acsomega.1c03465
Yazıcıoğlu, A. G., Aradağ, S., Aylı, E., Gülben, G., & Kakaç, S. (2018). 4.2 Heat Exchangers (I. B. T.-C. E. S. Dincer (ed.); pp. 40–69). Elsevier. https://doi.org/https://doi.org/10.1016/B978-0-12-809597-3.00402-8
Zhang, X., Ma, F., Yin, S., Wallace, C. D., Soltanian, M. R., Dai, Z., Ritzi, R. W., Ma, Z., Zhan, C., & Lü, X. (2021). Application of upscaling methods for fluid flow and mass transport in multi-scale heterogeneous media: A critical review. Applied Energy, 303, 117603. https://doi.org/https://doi.org/10.1016/j.apenergy.2021.117603
Downloads
Additional Files
Published
Issue
Section
License
Authors who publish with this journal agree to the following terms:
The journal allow the authors to hold the copyright without restrictions and allow the authors to retain publishing rights without restrictions.
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
This work is licensed under a Creative Commons Attribution 4.0 International License.