PENGARUH VARIASI CAMPURAN 2,5-DIMETHYLFURAN- MINYAK KELAPA PADA PEMBAKARAN DROPLED TERHADAP PERILAKU NYALA API
DOI:
https://doi.org/10.36499/jim.v20i2.11756Keywords:
2, 5 dimethylfuran, emisi, minyak kelapa, pembakaran droplet, perilaku nyala apiAbstract
Tujuan dari penelitian ini untuk mengetahui pengaruh variasi campuran 2,5-dimethylfuran- minyak kelapa pembakaran droplet terhadap evolusi nyala api, tinggi nyala api dan emisi hydrocarbon. Minyak nabati dan turunannya serta penambahan bioaditif 2,5-dimethylfuran sangat dibutuhkan untuk dilakukan penelitian sebagai pengganti bahan bakar fosil. Bahan bakar menggunakan variasi campuran 2,5-dimethylfuran-minyak kelapa. Dilakukan penelitian secara eksperimental dengan menempatkan sebuah tetesan campuran 2,5-dimethylfuran- minyak kelapa pada thermocouple type K dengan diameter tetesan 0.3 mm. Hasil penelitian menemukan campuran 2,5-dimethylfuran 15%-minyak kelapa bahwa bahan bakar mudah menguap disebabkan nilai viskositas 2,5-dimethylfuran lebih rendah daripada minyak kelapa. Sehingga molekul bahan bakar bergerak sangat leluasa menghasilkan proses nukleasi pada droplet menjadi lebih singkat. Adanya senyawa 2,5-dimethylfuran yang menghasilkan ikatan baru itu berpotensi meningkatkan panjang karbon rantai minyak kelapa. Dampaknya jarak antar molekul bahan bakar menjadi lebih kecil, sehingga kemungkinan untuk efektif tabrakan sangat besar. Fenomena ini dapat meningkatkan reaktivitas molekul bahan bakar sehingga mudah terbakar dan laju pembakaran difusi meningkat menghasilkan nyala api bulat, tinggi nyala api rendah dan emisi hydrocarbon menurun dan lebih stabil dibandingkan dengan campuran 2,5-dimethylfuran lainnya.References
Adeniyi, A.G. et al. (2029) ‘Pyrolysis of Different Fruit Peel Waste Via a Thermodynamic Model’, ABUAD Journal of Engineering Research and Development, 2(2), pp. 16–24.
Alexandrino, K. et al. (2014) ‘Interaction between 2, 5-Dimethylfuran and Nitric oxide: Experimental and Modeling Study’, Energy Fuels, 28(6), pp. 4193–4198. Available at: https://doi.org/10.1021/ef5005573
Ali, O. M. et al. (2016) ‘Analysis of Blended Fuel Properties and Engine Performance with Palm Biodiesel-Diesel Blended Fuel’, Renewable Energy, 86, pp. 59–67. Available at: https://doi.org/10.1016/j.renene.2015.07.103
Ali, I., Bahaitham, H. and Naebulharam, R. (2017), ‘A Comprehensive Kinetics Study of Coconut Shell Waste Pyrolysis’, Bioresource Technology, 235, pp. 1–11. Available at: https://doi.org/10.1016/j.biortech.2017.03.089
Ayeni, A.O., Agboola, O., Daramola, M.O., Grabner, B., Oni, B.A., Babatunde, D.E. and Evwodere, J. (2021), ‘Kinetic Study of Activation and Deactivation of Adsorbed Cellulase During Enzymatic Conversion of Alkaline Peroxide Oxidation-Pretreated Corn Cob to Sugar’, Korean Journal of Chemical Engineering, 38(1), pp. 81–89. Available at: https://doi.org/10.1007/s11814-020-0667-2
Bautista, L. F. et al. (2009) ‘Optimization of FAME Production from Waste Cooking Oil for Bio Diesel Use’, Biomass and Bioenergy, 33(5), pp. 862–72. Available at: https://doi.org/10.1016/j.biombioe.2009.01.009
Chau, M. Q. et al. (2020) ‘A Numeral Simulation Determining Optimal Ignition Timing Advance of SI Engines Using 2.5-Dimethylfuran-Gasoline Blends’, International Journal on Advanced Science, Engineering and Information Technology, 10(5), pp. 1933-1938. Available at: https://doi.org/10.18517/ijaseit.10.5.13051
Corsini, A. et al. (2015) ‘Vegetable Oils as Fuels in Diesel Engine, Engine Performance and Emissions’, Energy Procedia, 81, pp. 942–949. Available at: https://doi.org/10.1016/j.egypro.2015.12.151
Hellier, P., Ladommatos, N. and Yusaf, T. (2015) ‘The Influence of Straight Vegetable Oil Fatty Acid Composition on Compression Ignition Combustion and Emissions’, Fuel, 143, pp. 131–43. Available at: https://doi.org/10.1016/j.fuel.2014.11.021
Hoang, A.T., Nizetic, S. and Olcer, A.I. (2021) ‘2,5-Dimethylfuran (DMF) as a Promising Biofuel for the Spark Ignition Engine Application: a Comparative Analysis and Review’, Fuel, 285, 119140. Available at: https://doi.org/10.1016/j.fuel.2020.119140
How H.G. et al. (2012) ‘Impact of Coconut Oil Blends on Particulate-Phase Pahs and Regulated Emissions from a Light Duty Diesel Engine’, Energy 48(1), pp. 500–509. Available at: https://doi.org/10.1016/j.energy.2012.10.009
Ighalo, J.O. and Adeniyi, A.G. (2019), ‘Factor Effects and Interactions in Steam Reforming of Biomass Bio-Oil’, Chemical Papers, 74(5), pp. 1459–1470. Available at: https://doi.org/10.1007/s11696-019-00996-3
Kalam, M.A., Husnawan, M. and Masjuki, H.H. (2003), ‘Exhaust Emission and Combustion Evaluation of Coconut Oil-Powered Indirect Injection Diesel Engine’, Renewable Energy, 28(15), pp. 2405–2415. Available at: https://doi.org/10.1016/S0960-1481(03)00136-8
Kratzeisen, M. and Müller, J. (2010) ‘Influence of Free Fatty Acid Content of Coconut Oil on Deposit and Performanceof Plant Oil Pressure Stoves’, Fuel, 89(7), pp. 1583–1589. Available at: https://doi.org/10.1016/j.fuel.2009.08.038
Liu, X. et al. (2016) ‘Development of a Reduced Toluene Reference Fuel (TRF)-2,5-Dimethylfuranpolycyclic Aromatic Hydrocarbon (PAH) Mechanism for Engine Applications’, Combustion and Flame, 165, pp. 453–465. Available at: https://doi.org/10.1016/j.combustflame.2015.12.030
Liu, H. et al. (2019) ‘Investigation on Blending Effects of Gasoline Fuel with N-Butanol, DMF, and Ethanol on the Fuel Consumption and Harmful Emissions in a GDI Vehicle’, Energies, 12(10), 1845. Available at: https://doi.org/10.3390/en12101845
Malik, M.S.A. et al. (2017) ‘Combustion and Emission Characteristics of Coconut-Based Biodiesel in a Liquid Fuel Burner’, Energies, 10(4). Available at: https://doi.org/10.3390/en10040458.
Mat, S.C. et al. (2018) ‘Performance and Emissions of Straight Vegetable Oils and Its Blends as a Fuel in Diesel Engine: A Review’, Renewable and Sustainable Energy Reviews, 82, pp. 808–823. Available at: https://doi.org/10.1016/j.rser.2017.09.080
Mat, S.C. etal. (2019) ‘Optimisation of Viscosity and Density of Refined Palm Oil-Melaleuca Cajuputi Oil Binary Blends using Mixture Design Method’, Renewable Energy, 133, pp. 393–400. Available at: https://doi.org/10.1016/j.renene.2018.10.017
Nanlohy, H.Y. et al. (2018) ‘The Effect of Rh3+ Catalyst on the Combustion Characteristics of Crude Vegetable Oil Droplets’, Fuel, 220, pp. 220–232. Available at: https://doi.org/10.1016/j.fuel.2018.02.001.
Perdana, D. et al. (2018) ‘The Role of Fatty Acid Structure in Various Pure Vegetable Oils on Flame Characteristics and Stability Behavior for Industrial Furnace’, Eastern-European Journal of Enterprise Technologies, 5(8–95), pp. 65–75. https://doi.org/10.15587/1729-4061.2018.144243
Thakur, A.K. et al. (2017) ‘Progress in Performance Analysis of Ethanol-Gasoline Blends on SI Engine’,
Renewable and Sustainable Energy Reviews, 69, pp. 324–40. Available at: https://doi.org/10.1016/j.rser.2016.11.056
Wang, Q. and Sarkar, J. (2018), ‘Pyrolysis Behaviors of Waste Coconut Shell and Husk Biomasses’, International Journal of Energy Production and Management, 3 (1), pp. 34–43. Available at: https://doi.org/10.2495/EQ-V3-N1-34-43
Wang, X. et al. (2019) ‘Catalytic Hydrogenolysis of Biomass-Derived 5-Hydroxymethylfurfural to Biofuel 2, 5-Dimethylfuran’, Applied Catalysis A: General, 576, pp. 85–95. Available at: https://doi.org/10.1016/j.apcata.2019.03.005
Yilmaz, N. and Vigil, F.M. (2014) ‘Potential Use of a Blend of Diesel, Biodiesel, Alcohols and Vegetable Oil in Compression Ignition Engines’, Fuel 124, pp. 168–172. Available at: https://doi.org/10.1016/j.fuel.2014.01.075
Yilmaz, N., Atmanli, A. and Vigil, F.M. (2018) ‘Quaternary Blends of Diesel, Biodiesel, Higher Alcohols and Vegetable Oil in A Compression Ignition Engine’, Fuel, 212, pp. 462–469. Available at: https://doi.org/10.1016/j.fuel.2017.10.050
Zhang, M. and Wu, H. (2015) ‘Effect of Major Impurities in Crude Glycerol on Solubility and Properties of Glycerol/Methanol/Bio-Oil Blends’, Fuel, 159, pp. 118–127. Available at: https://doi.org/10.1016/j.fuel.2015.06.062
Zheng, Z. et al. (2016) ‘Experimental Study on the Combustion and Emissions Fueling Biodiesel/N-Butanol, Biodiesel/Ethanol and Biodiesel/2,5-Dimethylfuran on a Diesel Engine’, Energy, 115, pp. 539–549. Available at: https://doi.org/10.1016/j.energy.2016.09.054
Published
Issue
Section
License
Authors who publish with this journal agree to the following terms:
The journal allow the authors to hold the copyright without restrictions and allow the authors to retain publishing rights without restrictions.
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
This work is licensed under a Creative Commons Attribution 4.0 International License.