ERROR COMPENSATION OF A GRINDING MACHINE TOOL SPINDLE BY OPTIMIZATION DESIGN
DOI:
https://doi.org/10.36499/jim.v11i2.1381Abstract
Abstrak
Dalam makalah ini, kesalahan radial dari spindle mesin gerinda CNC presisi tinggi yang diakibatkan oleh pengaruh gaya unbalance telah diamati. Poros spindle dianggap sebagai rotor fleksibel yang didukung oleh dua buah angular contact ball bearing. Metode elemen hingga (FEM) telah diadopsi untuk mendapatkan persamaan gerak spindle. Dalam studi ini, pertama, frekuensi natural, kecepatan kritis dan amplitudo respon unbalance ditentukan terlebih dahulu agar dapat diketahui bagaimana bentuk dari perilaku dinamiknya. Kemudian, teknik optimasi desain digunakan untuk meminimalkan perpindahan radial pada spindle yang melibatkan parameter seperti diameter poros, karakteristik dinamik bearing, kecepatan kritis dan amplitudo respon unbalance, selain itu juga untuk mendapatkan diameter poros, kekakuan serta redaman bearing yang seoptimal mungkin. Hasil simulasi numerik telah menunjukkan bahwa dengan mengoptimumkan diameter poros, kekakuan bearing dan redaman bearing, kesalahan radial dari spindle dapat dikurangi. Spindle dengan kesalahan radial sekitar 4µm dapat dikompensasi dengan kepresisian menjadi 2 µm.
Â
Kata kunci: kesalahan radial, metode elemen hingga, optimum desain, spindle gerinda presisi tinggi.
Â
Abstract
In this paper, radial displacement error of a high precision spindle grinding caused by unbalance force was studied. The spindle shaft is considered as a flexible rotor supported by two pairs of angular contact ball bearing. The finite element method (FEM) have been adopted for obtaining the spindle equation motion. In this study, firstly, natural frequencies, critical frequencies and amplitude of unbalance response caused by residual unbalance are determined in order to investigate the spindle behaviors. Further more, an optimization design technique is conducted to minimize radial displacement of the spindle which considers shaft diameters, dynamic characteristics of the bearings, critical frequencies and amplitude of the unbalance response, and computes optimum spindle diameter and stiffness and damping of the bearings. Numerical simulation results show that by optimizing the shaft diameters, and stiffness and damping in the bearings, radial displacement of the spindle can be reduced. A spindle about 4 µm radial displacement error, can be compensated with 2 µm accuracy.
Â
Keywords: finite element method, high precision spindle grinding, optimization, radial displacement error.Downloads
Published
Issue
Section
License
Authors who publish with this journal agree to the following terms:
The journal allow the authors to hold the copyright without restrictions and allow the authors to retain publishing rights without restrictions.
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
This work is licensed under a Creative Commons Attribution 4.0 International License.