ANALISIS AKURASI SUPPORT VECTOR MACHINE DENGAN FUNGSI KERNEL GAUSSIAN RBF UNTUK PRAKIRAAN BEBAN LISTRIK HARIAN SEKTOR INDUSTRI
DOI:
https://doi.org/10.36499/jim.v11i2.1388Abstract
Abstrak
Keakuratan prakiraan beban listrik harian di sektor industri memegang peranan dalam penghematan energi listrik. Penghematan energi listrik dapat dilakukan dengan pengaturan operasional industri berdasarkan laporan prakiraan beban listrik listrik tersbut. Salah satu metode yang berhasil di dalam prediksi beban listrik adalah Suppor Vector Machine dengan berbagai macam fungsi Kernel yang mendukungnya. Penelitian ini bertujuan menganalisis akurasi sistem peramalan beban listrik harian yang diterapkan pada sektor industri menggunakan Support Vector Machine (SVM) dengan fungsi Kernel Gaussian RBF. Data penelitian ini merupakan data beban listrik harian pada salah satu industri farmasi terkemuka di Indonesia, yaitu PT. Phapros Indonesia selama tahun 2014. Untuk mendukung keakuratan penelitian ini, parameter data latih SVMÂ tidak hanya berasal dari data times series beban listrik, tetapi juga berasal dari data kapasitas produksi dan jenis hari kerja.
Â
Kata kunci: support vector machine, fungsi kernel, gaussian RBF, peramalan beban listrik harian, nilai error prediksi, MAPE
Downloads
Published
Issue
Section
License
Authors who publish with this journal agree to the following terms:
The journal allow the authors to hold the copyright without restrictions and allow the authors to retain publishing rights without restrictions.
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
This work is licensed under a Creative Commons Attribution 4.0 International License.