Baterai Aluminium Udara dengan Bahan Dasar Zeolit Alam yang Dipanaskan Sebagai Elektroda

Authors

  • Bondan Respati
  • Agung Nugroho
  • Muhammad Taufiq Jurusan Teknik Mesin, Universitas Wahid Hasyim, Semarang, Indonesia Jl, Menoreh Tengah X/22, Sampangan, Semarang
  • Agung Nugroho Jurusan Teknik Mesin, Universitas Wahid Hasyim, Semarang, Indonesia Jl, Menoreh Tengah X/22, Sampangan, Semarang

DOI:

https://doi.org/10.36499/jim.v18i1.5992

Keywords:

baterai, alumunium-udara, zeolit alam, suhu pemanasan

Abstract

Baterai alumunium-udara menggunakan campuran zeolit alam, grafit ,karbon hitam dan guar gum sebagai katoda  telah di buat serta karasteristik pengosongan baterai telah di selidiki. Zeolit alam disiapkan  tanpa pembakaran dan dengan pemanasan pada 300 , 500, 700. Karakteristik diameter serbuk zeolit alam diukur untuk mengetahui perbedaan pemanasan. Hasil pemenasan zeolit alam dicampurkan dengan bahan lainnya. Campuran zeolit alam, grafit, karbon hitam dan guar gum ilarutkan menggunakan larutan NaCl. Larutan itu dilapiskan  pada permukaan katoda udara nikel mesh dimensi 6 x 5 cm untuk memperoleh lapisan yang melekat pada nikel mesh. Anoda digunakan plat alumunium dengan tebal 1,25mm. Tujuan dari penelitian ini ke arah membuat baterai alumninium-udara yang menghasilkan tegangan listrik. Rangkaian baterai aluminium-udara 4 sel secara seri diuji untuk menyalakan  lampu LED. Tegangan, arus diukur agar karakteristik dari baterai diketahui.

 

 

 

 

References

Buwono, A., & Febrian, S. (2020). The Aluminimum Air Battery Performace by Using Red Brick As The Cathode to Turn on The Led Lights. X(2), 86–91.

Chen, D., Wang, X., Liang, J., Zhang, Z., & Chen, W. (2021). A novel electrospinning polyacrylonitrile separator with dip-coating of zeolite and phenoxy resin for Li-ion batteries. Membranes, 11(4). https://doi.org/10.3390/membranes11040267

Holub, M., Balintova, M., Demcak, S., & Hurakova, M. (2016). Characterization of Natural Zeolite and Determination Its Adsorption Properties. Journal of Civil Engineering, Environment and Architecture, 63. https://doi.org/10.7862/rb.2016.192

Krishna, R. N. (2020). Design and Development of Aluminium Air Battery. International Journal for Research in Applied Science and Engineering Technology, 8(8), 380–382. https://doi.org/10.22214/ijraset.2020.30904

Li, Y., Wang, X., Liang, J., Wu, K., Xu, L., & Wang, J. (2020). Design of a high performance zeolite/polyimide composite separator for lithium-ion batteries. Polymers, 12(4). https://doi.org/10.3390/POLYM12040764

Liu, F., & Chuan, X. (2021). Recent developments in natural mineral-based separators for lithium-ion batteries. RSC Advances, 11(27), 16633–16644. https://doi.org/10.1039/d1ra02845f

Maulana, I., Aripin, & Chobir, A. (2019). Studi Elektrokimia Baterai Aluminium-. Journal of Energy and Electrical Engineering (JEEE), 01(01), 25–28. https://doi.org/https://doi.org/10.37058/jeee.v1i1.1193

Mgbemere, H. E., Ekpe, I. C., & Lawal, G. I. (2017). Zeolite Synthesis, Characterisation and Application Areas: A Review. International Research Journal of Environmental Sciences, 6(10), 45–59.

Pan, W., Wang, Y., Kwok, H. Y. H., & Leung, D. Y. C. (2019). A low-cost portable cotton-based aluminum-air battery with high specific energy. Energy Procedia, 158, 179–185. https://doi.org/10.1016/j.egypro.2019.01.067

Respati, S. M. B., Soenoko, R., Irawan, Y. S., & Suprapto, W. (2016). Effect of Low Temperature Sintering on the Porosity and Microstructure of Porous Zeolite Ceramic. Applied Mechanics and Materials, 836, 219–223. https://doi.org/10.4028/www.scientific.net/amm.836.219

Schoetz, T., de Leon, C. P., Ueda, M., & Bund, A. (2017). Perspective—State of the Art of Rechargeable Aluminum Batteries in Non-Aqueous Systems. Journal of The Electrochemical Society, 164(14), A3499–A3502. https://doi.org/10.1149/2.0311714jes

Slavova, M., Mihaylova-Dimitrova, E., Mladenova, E., Abrashev, B., Burdin, B., & Vladikova, D. (2020). Zeolite based air electrodes for secondary

Published

2022-04-30

Issue

Section

Articles