Pengaruh Variasi Tekanan Primary Flow dan Diameter Exit Nozzle Terhadap Secondary Flow Pada Kinerja Ejector Fresh Water Generator

Authors

  • Wahyu Ari Putranto Politeknik Maritim Negeri Indonesia
  • Khaeroman . Dosen Jurusan Teknika di Polimarin
  • Abdul Hamid

DOI:

https://doi.org/10.36499/jim.v18i1.6035

Keywords:

Ejektor FWG, tekanan, primary flow, diameter exit nozzle, secondary flow

Abstract

Ejektor adalah salah satu komponen penting pada Fresh water generator (FWG) yang berfungsi untuk membuat ruangan evaporator menjadi vakum dengan aliran air laut yang melewati ejektor tersebut. FWG adalah  alat di kapal yang digunakan untuk merubah air laut menjadi air tawar. Prinsip kerja ejektor adalah seperti pompa statis yang bekerja berdasarkan prinsip kevakuman. Semakin cepat vakum evaporator maka semakin cepat proses pembuatan air tawar dari air laut. Tujuan penelitian ini adalah mengetahui pengaruh variasi primary flow 300, 400 kPa (3, 4 bar) dan diameter exit nozzle 5, 6, 7 mm pada ejektor terhadap tekanan di secondary flow yaitu  pada sisi isapan udara (vakum). Penelitian dilakukan dengan simulasi numerik software komersial CFD untuk memprediksi fenomena tekanan aliran fluida yang melewati exit nozel dan secondary flow pada ejektor. Hasil simulasi menunjukkan ejektor dengan primary flow 3 bar dan diameter exit nozzle 7 mm menghasilkan tekanan di exit nosel sebesar  1,99 bar dan berdampak pada tekanan di secondary flow sebesar 0,51 bar. Sedangkan ejektor dengan primary flow 4 bar dan diameter exit nozzle 7 mm menghasilkan tekanan di exit nosel sebesar  2,57 bar berdampak pada secondary flow menghasilkan  tekanan  yang optimum sebesar 0,81 bar sehingga evaporator cepat vakum. Semakin cepat ruang evaporator vakum maka semakin cepat pula dimulainya proses pembuatan air laut menjadi air tawar pada alat FWG

Author Biographies

Wahyu Ari Putranto, Politeknik Maritim Negeri Indonesia

Dosen Jurusan Teknika Polimarin

Abdul Hamid

Program Studi Teknik Mesin, Universitas Maritim AMNI Semarang

Jl. Soekarno Hatta No.180, Palebon, Kec. Pedurungan, Kota Semarang, Jawa Tengah 50246

References

B.M. Tashtoush, M.A. Al-Nimr, M.A. Khasawneh. (2019). A comprehensive review of ejector design, performance, and applications, Appl. Energy 240 138–172.

E.Y. Sokolov, N.M. Zinger. (1989). Inkjet Devices, third ed., Energoatomisdat, Moscow.

Iing M, Abdurahman, Haris R., (2019), Studi Kinerja Fresh Water Generator Di Kapal AHTS PETEKA 5401, Jurnal Sains

Indah R, N dan Syamsuri dan Rianata P, R. (2017). Simulasi Numerik Aliran Melewati Nozzle Pada Ejector Converging-Diverging dengan Variasi Diameter Exit Nozzle. Surabaya, Institut Teknologi Adhi Tama. REM Jurnal2.

James R. Lines. (1997). Understanding Ejector systems necessary to troubleshoot vacuum distillation. Oil and gas journal

Lívia Bueno Reis, Rafael dos Santos Gioria. (2021) Optimization of liquid jet ejector geometry and its impact on flow fields Applied Thermal Engineering 194, 117-132

R. Mallela, D. Chatterjee. (2011). Numerical investigation of the effect of geometry on the performance of a jet pump, Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 225 (7), 1614–1625.

Rizgar B, Well and Ibrahim J, and Molan,M. 2015. Effect of Nozzle Diameter on Steam Ejector Performance. Kurdistan, Iraq. University of Salahaddin.

Susanto, Muhammad Subri dan Muh.Amin. (2020). Pengaruh Variasi Bukaan Katup Bypass Primary Flow Dan Diameter Throat Nozzle Terhadap Entrainment Ratio Ejector. Seminar Nasional Teknologi Industri Hijau 3, 109-119.

V.G. Tsegelsky. (2003). Two-Phase Jet Devices, Publishing House at N.E. Bauman Moscow State Technical University, Moscow,.

Y.N. Vasiliev. (1971). Theory of a Two-Phase Gas-Liquid Ejector with Cylindrical Mixing Chamber, Shoulder machines and inkjet devices. 5, 175–261.

Zhu, Yinhai, Jiang, Peixue. (2013). Experimental and Numerical Investigation of the Effect of Shock Wave Characteristic on the Ejector Performance. International Journal of Refrigerant. 40, 31- 42,.

Downloads

Published

2022-04-30

Issue

Section

Articles