Perancangan Sistim Mekatronika Berbasis Arduino dengan Menggunakan Sensor Electroenchepalogram (EEG) untuk Pembacaan Sinyal Otak
DOI:
https://doi.org/10.36499/jim.v18i2.7349Abstract
Electroencephalogram (EEG) merupakan salah satu biomedical sensor yang mampu membaca gelombang otak. Sama halnya dengan biomedical sensor lainnya (EMG/ECG), sensor ini mampu dikembangkan lebih lanjut diberbagai bidang salah satunya dibidang robotika. Penelitian ini menghasilkan sebuah sistim mekatronika yang mampu untuk membaca gelombang otak menggunakan sensor electroencephalogram (EEG). Hasil dari sinyal yang ditangkap kemudian diolah menjadi suatu sinyal atensi yang digunakan untuk mengetahui tingkat fokus dari seseorang. Sinyal atensi inilah yang kemuadian digunakan sebagai trigger apabila nilai yang didapat mampu melewati threshold yang ditetapkan.
References
Annanto, G.P., Haryanto, I. and Ismail, R., 2021, October. A Computational Stress Analysis of Active Prosthetic Hand “Asto Hand V4†for the Loaded Hook Position. In 2021 IEEE International Biomedical Instrumentation and Technology Conference (IBITeC) (pp. 130-135). IEEE.
Annanto, G.P., Ismail, R., Haryanto, I., Ariyanto, M. and Pambudi, K.A., 2019, October. Numerical Analysis of Stress and Displacement on The Middle Finger of The Prosthetic Hand Due to Hook Position. In 2019 International Biomedical Instrumentation and Technology Conference (IBITeC) (Vol. 1, pp. 123-126). IEEE.
Ariyanto, M., Caesarendra, W., Mustaqim, K.A., Irfan, M., Pakpahan, J.A., Setiawan, J.D. and Winoto, A.R., 2015, October. Finger movement pattern recognition method using artificial neural network based on electromyography (EMG) sensor. In 2015 International Conference on Automation, Cognitive Science, Optics, Micro Electro-Mechanical System, and Information Technology (ICACOMIT) (pp. 12-17). IEEE.
Casson, A.J., Abdulaal, M., Dulabh, M., Kohli, S., Krachunov, S. and Trimble, E., 2018. Electroencephalogram. In Seamless healthcare monitoring (pp. 45-81). Springer, Cham.
Datasheet, A.U., 2012. Farnell. London, UK.
Liu, N.H., Chiang, C.Y. and Chu, H.C., 2013. Recognizing the degree of human attention using EEG signals from mobile sensors. sensors, 13(8), pp.10273-10286.
Pambudi, K.A., Ismail, R., Ariyanto, M., Setiawan, J.D. and Annanto, G.P., 2019, October. Performance Test of Fingers on 3D Printed Myoelectric Prosthetic Hand. In 2019 International Biomedical Instrumentation and Technology Conference (IBITeC) (Vol. 1, pp. 37-40). IEEE.
Sezer, A., İnel, Y., Seçkin, A.Ç. and Uluçınar, U., 2015, May. An investigation of university students’ attention levels in real classroom settings with NeuroSky’s MindWave mobile (EEG) device. In Intenational educational technology conference, İstanbul, Turkey (Vol. 27, No. 29, pp. 88-101).
Studio, I., 2010. HC-05-Bluetooth to serial port module. Datasheet, June.
Zubrzycki, J., Jonak, K., Opielak, G., Krukow, P. and Maciejewski, R., 2015. Application of IT Methods for the Identification and Analysis of EEG Signals. In Applied Mechanics and Materials (Vol. 791, pp. 335-341). Trans Tech Publications Ltd.
Downloads
Published
Issue
Section
License
Authors who publish with this journal agree to the following terms:
The journal allow the authors to hold the copyright without restrictions and allow the authors to retain publishing rights without restrictions.
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
This work is licensed under a Creative Commons Attribution 4.0 International License.