Peningkatan Sifat Mekanik Produk 3D Printing dengan Proses Annealing

Authors

  • Slamet Saefudin Universitas Muhammadiyah Semarang
  • Dini Cahyandari
  • Ilham Yustar Afif
  • Samsudi Raharjo
  • Muh. Subri
  • Ahmad Nuril Anwar

DOI:

https://doi.org/10.36499/jim.v19i1.8568

Keywords:

3D Printing, Fused Deposition Modeling (FDM), Annealing, Uji tarik

Abstract

Teknologi pencetak tiga dimensi Fused Deposition Modeling (3D FDM) memiliki perkembangan yang sangat pesat karena kemudahan penggunaan dalam menghasilkan produk yang komplek secara cepat sesuai harapan. Kemudahan penggunaan dan biaya yang murah menjadikan teknologi FDM banyak diminati di berbagai bidang ilmu maupun teknik. Namun, produk yang dihasilkan dari proses lapis demi lapis pada 3D FDM menjadikan sifat mekanik yang rendah. Tujuan dari penelitian ini adalah untuk menyelidiki peningkatan sifat mekanik sampel poli asam laktat (PLA) yang dicetak dengan teknik 3D FDM melalui proses annealing. Sampel di annealing pada suhu dan waktu yang berbeda untuk selanjutnya dievaluasi dengan uji tarik. Hasil menunjukkan bahwa proses annealing menyebabkan peningkatan kekuatan tarik pada sampel dan perubahan dimensi yang disebabkan karena adanya pemadatan pada susunan layer. Semakin lama dan tinggi suhu yang digunakan dalam proses annealing membuat sampel lebih getas. Hasil penelitian menunjukkan bahwa peningkatan kekuatan tarik tertinggi terjadi pada sampel PLA yang mengalami perlakuan panas pada suhu 120 oC dan waktu pemaparan panas selama 30 menit. Hasil ini menunjukkan bahwa proses perlakuan panas annealing mempengaruhi kuat tarik PLA yang dapat ditingkatkan dengan penggunaan parameter suhu dan waktu pemaparan yang tepat untuk menghindari perubahan dimensi.

 

Kata kunci: 3D Printing, Fused Deposition Modeling (FDM), Annealing, Uji tarik

Author Biography

Slamet Saefudin, Universitas Muhammadiyah Semarang

Departemen Teknik Mesin

References

Aliheidari, N., Tripuraneni, R., Ameli, A., & Nadimpalli, S. (2017). Fracture resistance measurement of fused deposition modeling 3D printed polymers. Polymer Testing, 60, 94–101. https://doi.org/10.1016/j.polymertesting.2017.03.016

Basgul, C., Yu, T., MacDonald, D. W., Siskey, R., Marcolongo, M., & Kurtz, S. M. (2020). Does annealing improve the interlayer adhesion and structural integrity of FFF 3D printed PEEK lumbar spinal cages? Journal of the Mechanical Behavior of Biomedical Materials, 102(May 2019), 103455. https://doi.org/10.1016/j.jmbbm.2019.103455

Bell, D., & Siegmund, T. (2018). 3D-printed polymers exhibit a strength size effect. Additive Manufacturing, 21, 658–665. https://doi.org/10.1016/j.addma.2018.04.013

Bhandari, S., Lopez-Anido, R. A., & Gardner, D. J. (2019). Enhancing the interlayer tensile strength of 3D printed short carbon fiber reinforced PETG and PLA composites via annealing. Additive Manufacturing, 30, 100922. https://doi.org/10.1016/j.addma.2019.100922

Butt, J., & Bhaskar, R. (2020). Investigating the effects of annealing on the mechanical properties of FFF-printed thermoplastics. Journal of Manufacturing and Materials Processing, 4(2), 1–20. https://doi.org/10.3390/jmmp4020038

Chen, J. V, Tanaka, K. S., Dang, A. B. C., & Dang, A. (2020). Identifying a commercially-available 3D printing process that minimizes model distortion after annealing and autoclaving and the effect of steam sterilization on mechanical strength. 3D Printing in Medicine, 6(1), 1–10. https://doi.org/10.1186/s41205-020-00062-9

Diani, J., & Gall, K. (2006). Finite Strain 3D Thermoviscoelastic Constitutive Model. Society, 1–10. https://doi.org/10.1002/pen

Dizon, J. R. C., Espera, A. H., Chen, Q., & Advincula, R. C. (2018). Mechanical characterization of 3D-printed polymers. In Additive Manufacturing (Vol. 20, pp. 44–67). Elsevier B.V. https://doi.org/10.1016/j.addma.2017.12.002

Dong, J., Huang, X., Muley, P., Wu, T., Barekati-Goudarzi, M., Tang, Z., Li, M., Lee, S., Boldor, D., & Wu, Q. (2020). Carbonized cellulose nanofibers as dielectric heat sources for microwave annealing 3D printed PLA composite. Composites Part B: Engineering, 184, 107640. https://doi.org/10.1016/j.compositesb.2019.107640

Dunn, R. M., Hart, K. R., & Wetzel, E. D. (2019). Improving fracture strength of fused filament fabrication parts via thermal annealing in a printed support shell. Progress in Additive Manufacturing, 4(3), 233–243. https://doi.org/10.1007/s40964-019-00081-x

Ferreira, I., Melo, C., Neto, R., Machado, M., Alves, J. L., & Mould, S. (2020). Study of the annealing influence on the mechanical performance of PA12 and PA12 fibre reinforced FFF printed specimens. Rapid Prototyping Journal, 26(10), 1761–1770. https://doi.org/10.1108/RPJ-10-2019-0278

Hart, K. R., Dunn, R. M., Sietins, J. M., Hofmeister Mock, C. M., Mackay, M. E., & Wetzel, E. D. (2018). Increased fracture toughness of additively manufactured amorphous thermoplastics via thermal annealing. Polymer, 144, 192–204. https://doi.org/10.1016/j.polymer.2018.04.024

Hart, K. R., Dunn, R. M., & Wetzel, E. D. (2020). Increased fracture toughness of additively manufactured semi-crystalline thermoplastics via thermal annealing. Polymer, 211(September), 123091. https://doi.org/10.1016/j.polymer.2020.123091

Hikmat, M., Rostam, S., & Ahmed, Y. M. (2021). Investigation of tensile property-based Taguchi method of PLA parts fabricated by FDM 3D printing technology. Results in Engineering, 11, 100264. https://doi.org/10.1016/j.rineng.2021.100264

Hong, J. H., Yu, T., Chen, Z., Park, S. J., & Kim, Y. H. (2019). Improvement of flexural strength and compressive strength by heat treatment of PLA filament for 3D-printing. Modern Physics Letters B, 33(14–15), 3–7. https://doi.org/10.1142/S0217984919400256

Jaisingh Sheoran, A., & Kumar, H. (2020). Fused Deposition modeling process parameters optimization and effect on mechanical properties and part quality: Review and reflection on present research. Materials Today: Proceedings, 21(xxxx), 1659–1672. https://doi.org/10.1016/j.matpr.2019.11.296

Kumar, K. S., Soundararajan, R., Shanthosh, G., Saravanakumar, P., & Ratteesh, M. (2021). Augmenting effect of infill density and annealing on mechanical properties of PETG and CFPETG composites fabricated by FDM. Materials Today: Proceedings, 45(xxxx), 2186–2191. https://doi.org/10.1016/j.matpr.2020.10.078

Liparoti, S., Sofia, D., Romano, A., Marra, F., & Pantani, R. (2021). Fused filament deposition of pla: The role of interlayer adhesion in the mechanical performances. Polymers, 13(3), 1–18. https://doi.org/10.3390/polym13030399

Lluch-Cerezo, J., Meseguer, M. D., García-Manrique, J. A., & Benavente, R. (2022). Influence of Thermal Annealing Temperatures on Powder Mould Effectiveness to Avoid Deformations in ABS and PLA 3D-Printed Parts. Polymers, 14(13). https://doi.org/10.3390/polym14132607

Lv, S., Gu, J., Cao, J., Tan, H., & Zhang, Y. (2015). Effect of annealing on the thermal properties of poly (lactic acid)/starch blends. International Journal of Biological Macromolecules, 74, 297–303. https://doi.org/10.1016/j.ijbiomac.2014.12.022

Malekmotiei, L., Voyiadjis, G. Z., Samadi-Dooki, A., Lu, F., & Zhou, J. (2017). Effect of annealing temperature on interrelation between the microstructural evolution and plastic deformation in polymers. Journal of Polymer Science, Part B: Polymer Physics, 55(17), 1286–1297. https://doi.org/10.1002/polb.24379

Ngo, T. D., Kashani, A., Imbalzano, G., Nguyen, K. T. Q., & Hui, D. (2018a). Additive manufacturing (3D printing): A review of materials, methods, applications and challenges. In Composites Part B: Engineering (Vol. 143, Issue February, pp. 172–196). Elsevier. https://doi.org/10.1016/j.compositesb.2018.02.012

Ngo, T. D., Kashani, A., Imbalzano, G., Nguyen, K. T. Q., & Hui, D. (2018b). Additive manufacturing (3D printing): A review of materials, methods, applications and challenges. In Composites Part B: Engineering (Vol. 143, pp. 172–196). Elsevier Ltd. https://doi.org/10.1016/j.compositesb.2018.02.012

Rabbi, M. F., & Chalivendra, V. (2021). Improvement in interfacial fracture toughness of multi-material additively manufactured composites through thermal annealing. Forces in Mechanics, 5, 100051. https://doi.org/10.1016/j.finmec.2021.100051

Slavković, V., Grujović, N., Disic, A., & Radovanović, A. (2017). Influence of Annealing and Printing Directions on Mechanical Properties of PLA Shape Memory Polymer Produced by Fused Deposition Modeling. International Congress of Serbian Society of Mechanics, June, 1–8.

Valvez, S., Silva, A. P., Reis, P. N. B., & Berto, F. (2022). Annealing effect on mechanical properties of 3D printed composites. Procedia Structural Integrity, 37(C), 738–745. https://doi.org/10.1016/j.prostr.2022.02.004

Valvez, Sara, Reis, P. N. B., & Ferreira, J. A. M. (2023). Effect of annealing treatment on mechanical properties of 3D-Printed composites. Journal of Materials Research and Technology, 23, 2101–2115. https://doi.org/10.1016/j.jmrt.2023.01.097

Vanaei, H. R., Raissi, K., Deligant, M., Shirinbayan, M., Fitoussi, J., Khelladi, S., & Tcharkhtchi, A. (2020). Toward the understanding of temperature effect on bonding strength, dimensions and geometry of 3D-printed parts. Journal of Materials Science, 55(29), 14677–14689. https://doi.org/10.1007/s10853-020-05057-9

Vindokurov, I., Pirogova, Y., Tashkinov, M., & Silberschmidt, V. V. (2022). Effect of Heat Treatment on Elastic Properties and Fracture Toughness of Fused Filament Fabricated PEEK for Biomedical Applications. Polymers, 14(24). https://doi.org/10.3390/polym14245521

Vorkapić, M., Mladenović, I., Ivanov, T., KovaÄević, A., Hasan, M. S., Simonović, A., & Trajković, I. (2022). Enhancing mechanical properties of 3D printed thermoplastic polymers by annealing in moulds. Advances in Mechanical Engineering, 14(8), 1–15. https://doi.org/10.1177/16878132221120737

Wach, R. A., Wolszczak, P., & Adamus-Wlodarczyk, A. (2018). Enhancement of Mechanical Properties of FDM-PLA Parts via Thermal Annealing. Macromolecular Materials and Engineering, 303(9), 1800169. https://doi.org/10.1002/mame.201800169

Wang, G., Zhang, D., Li, B., Wan, G., Zhao, G., & Zhang, A. (2019). Strong and thermal-resistance glass fiber-reinforced polylactic acid (PLA) composites enabled by heat treatment. International Journal of Biological Macromolecules, 129, 448–459. https://doi.org/10.1016/j.ijbiomac.2019.02.020

Yu, W., Wang, X., Ferraris, E., & Zhang, J. (2019). Melt crystallization of PLA/Talc in fused filament fabrication. Materials & Design, 182, 108013. https://doi.org/10.1016/j.matdes.2019.108013

Yu, W., Wang, X., Yin, X., Ferraris, E., & Zhang, J. (2023). The effects of thermal annealing on the performance of material extrusion 3D printed polymer parts. Materials and Design, 226, 111687. https://doi.org/10.1016/j.matdes.2023.111687

Downloads

Published

2023-08-09

Issue

Section

Articles