Peningkatan Sifat Mekanik Produk 3D Printing dengan Proses Annealing
DOI:
https://doi.org/10.36499/jim.v19i1.8568Keywords:
3D Printing, Fused Deposition Modeling (FDM), Annealing, Uji tarikAbstract
Teknologi pencetak tiga dimensi Fused Deposition Modeling (3D FDM) memiliki perkembangan yang sangat pesat karena kemudahan penggunaan dalam menghasilkan produk yang komplek secara cepat sesuai harapan. Kemudahan penggunaan dan biaya yang murah menjadikan teknologi FDM banyak diminati di berbagai bidang ilmu maupun teknik. Namun, produk yang dihasilkan dari proses lapis demi lapis pada 3D FDM menjadikan sifat mekanik yang rendah. Tujuan dari penelitian ini adalah untuk menyelidiki peningkatan sifat mekanik sampel poli asam laktat (PLA) yang dicetak dengan teknik 3D FDM melalui proses annealing. Sampel di annealing pada suhu dan waktu yang berbeda untuk selanjutnya dievaluasi dengan uji tarik. Hasil menunjukkan bahwa proses annealing menyebabkan peningkatan kekuatan tarik pada sampel dan perubahan dimensi yang disebabkan karena adanya pemadatan pada susunan layer. Semakin lama dan tinggi suhu yang digunakan dalam proses annealing membuat sampel lebih getas. Hasil penelitian menunjukkan bahwa peningkatan kekuatan tarik tertinggi terjadi pada sampel PLA yang mengalami perlakuan panas pada suhu 120 oC dan waktu pemaparan panas selama 30 menit. Hasil ini menunjukkan bahwa proses perlakuan panas annealing mempengaruhi kuat tarik PLA yang dapat ditingkatkan dengan penggunaan parameter suhu dan waktu pemaparan yang tepat untuk menghindari perubahan dimensi.
Â
Kata kunci: 3D Printing, Fused Deposition Modeling (FDM), Annealing, Uji tarik
References
Aliheidari, N., Tripuraneni, R., Ameli, A., & Nadimpalli, S. (2017). Fracture resistance measurement of fused deposition modeling 3D printed polymers. Polymer Testing, 60, 94–101. https://doi.org/10.1016/j.polymertesting.2017.03.016
Basgul, C., Yu, T., MacDonald, D. W., Siskey, R., Marcolongo, M., & Kurtz, S. M. (2020). Does annealing improve the interlayer adhesion and structural integrity of FFF 3D printed PEEK lumbar spinal cages? Journal of the Mechanical Behavior of Biomedical Materials, 102(May 2019), 103455. https://doi.org/10.1016/j.jmbbm.2019.103455
Bell, D., & Siegmund, T. (2018). 3D-printed polymers exhibit a strength size effect. Additive Manufacturing, 21, 658–665. https://doi.org/10.1016/j.addma.2018.04.013
Bhandari, S., Lopez-Anido, R. A., & Gardner, D. J. (2019). Enhancing the interlayer tensile strength of 3D printed short carbon fiber reinforced PETG and PLA composites via annealing. Additive Manufacturing, 30, 100922. https://doi.org/10.1016/j.addma.2019.100922
Butt, J., & Bhaskar, R. (2020). Investigating the effects of annealing on the mechanical properties of FFF-printed thermoplastics. Journal of Manufacturing and Materials Processing, 4(2), 1–20. https://doi.org/10.3390/jmmp4020038
Chen, J. V, Tanaka, K. S., Dang, A. B. C., & Dang, A. (2020). Identifying a commercially-available 3D printing process that minimizes model distortion after annealing and autoclaving and the effect of steam sterilization on mechanical strength. 3D Printing in Medicine, 6(1), 1–10. https://doi.org/10.1186/s41205-020-00062-9
Diani, J., & Gall, K. (2006). Finite Strain 3D Thermoviscoelastic Constitutive Model. Society, 1–10. https://doi.org/10.1002/pen
Dizon, J. R. C., Espera, A. H., Chen, Q., & Advincula, R. C. (2018). Mechanical characterization of 3D-printed polymers. In Additive Manufacturing (Vol. 20, pp. 44–67). Elsevier B.V. https://doi.org/10.1016/j.addma.2017.12.002
Dong, J., Huang, X., Muley, P., Wu, T., Barekati-Goudarzi, M., Tang, Z., Li, M., Lee, S., Boldor, D., & Wu, Q. (2020). Carbonized cellulose nanofibers as dielectric heat sources for microwave annealing 3D printed PLA composite. Composites Part B: Engineering, 184, 107640. https://doi.org/10.1016/j.compositesb.2019.107640
Dunn, R. M., Hart, K. R., & Wetzel, E. D. (2019). Improving fracture strength of fused filament fabrication parts via thermal annealing in a printed support shell. Progress in Additive Manufacturing, 4(3), 233–243. https://doi.org/10.1007/s40964-019-00081-x
Ferreira, I., Melo, C., Neto, R., Machado, M., Alves, J. L., & Mould, S. (2020). Study of the annealing influence on the mechanical performance of PA12 and PA12 fibre reinforced FFF printed specimens. Rapid Prototyping Journal, 26(10), 1761–1770. https://doi.org/10.1108/RPJ-10-2019-0278
Hart, K. R., Dunn, R. M., Sietins, J. M., Hofmeister Mock, C. M., Mackay, M. E., & Wetzel, E. D. (2018). Increased fracture toughness of additively manufactured amorphous thermoplastics via thermal annealing. Polymer, 144, 192–204. https://doi.org/10.1016/j.polymer.2018.04.024
Hart, K. R., Dunn, R. M., & Wetzel, E. D. (2020). Increased fracture toughness of additively manufactured semi-crystalline thermoplastics via thermal annealing. Polymer, 211(September), 123091. https://doi.org/10.1016/j.polymer.2020.123091
Hikmat, M., Rostam, S., & Ahmed, Y. M. (2021). Investigation of tensile property-based Taguchi method of PLA parts fabricated by FDM 3D printing technology. Results in Engineering, 11, 100264. https://doi.org/10.1016/j.rineng.2021.100264
Hong, J. H., Yu, T., Chen, Z., Park, S. J., & Kim, Y. H. (2019). Improvement of flexural strength and compressive strength by heat treatment of PLA filament for 3D-printing. Modern Physics Letters B, 33(14–15), 3–7. https://doi.org/10.1142/S0217984919400256
Jaisingh Sheoran, A., & Kumar, H. (2020). Fused Deposition modeling process parameters optimization and effect on mechanical properties and part quality: Review and reflection on present research. Materials Today: Proceedings, 21(xxxx), 1659–1672. https://doi.org/10.1016/j.matpr.2019.11.296
Kumar, K. S., Soundararajan, R., Shanthosh, G., Saravanakumar, P., & Ratteesh, M. (2021). Augmenting effect of infill density and annealing on mechanical properties of PETG and CFPETG composites fabricated by FDM. Materials Today: Proceedings, 45(xxxx), 2186–2191. https://doi.org/10.1016/j.matpr.2020.10.078
Liparoti, S., Sofia, D., Romano, A., Marra, F., & Pantani, R. (2021). Fused filament deposition of pla: The role of interlayer adhesion in the mechanical performances. Polymers, 13(3), 1–18. https://doi.org/10.3390/polym13030399
Lluch-Cerezo, J., Meseguer, M. D., GarcÃa-Manrique, J. A., & Benavente, R. (2022). Influence of Thermal Annealing Temperatures on Powder Mould Effectiveness to Avoid Deformations in ABS and PLA 3D-Printed Parts. Polymers, 14(13). https://doi.org/10.3390/polym14132607
Lv, S., Gu, J., Cao, J., Tan, H., & Zhang, Y. (2015). Effect of annealing on the thermal properties of poly (lactic acid)/starch blends. International Journal of Biological Macromolecules, 74, 297–303. https://doi.org/10.1016/j.ijbiomac.2014.12.022
Malekmotiei, L., Voyiadjis, G. Z., Samadi-Dooki, A., Lu, F., & Zhou, J. (2017). Effect of annealing temperature on interrelation between the microstructural evolution and plastic deformation in polymers. Journal of Polymer Science, Part B: Polymer Physics, 55(17), 1286–1297. https://doi.org/10.1002/polb.24379
Ngo, T. D., Kashani, A., Imbalzano, G., Nguyen, K. T. Q., & Hui, D. (2018a). Additive manufacturing (3D printing): A review of materials, methods, applications and challenges. In Composites Part B: Engineering (Vol. 143, Issue February, pp. 172–196). Elsevier. https://doi.org/10.1016/j.compositesb.2018.02.012
Ngo, T. D., Kashani, A., Imbalzano, G., Nguyen, K. T. Q., & Hui, D. (2018b). Additive manufacturing (3D printing): A review of materials, methods, applications and challenges. In Composites Part B: Engineering (Vol. 143, pp. 172–196). Elsevier Ltd. https://doi.org/10.1016/j.compositesb.2018.02.012
Rabbi, M. F., & Chalivendra, V. (2021). Improvement in interfacial fracture toughness of multi-material additively manufactured composites through thermal annealing. Forces in Mechanics, 5, 100051. https://doi.org/10.1016/j.finmec.2021.100051
Slavković, V., Grujović, N., Disic, A., & Radovanović, A. (2017). Influence of Annealing and Printing Directions on Mechanical Properties of PLA Shape Memory Polymer Produced by Fused Deposition Modeling. International Congress of Serbian Society of Mechanics, June, 1–8.
Valvez, S., Silva, A. P., Reis, P. N. B., & Berto, F. (2022). Annealing effect on mechanical properties of 3D printed composites. Procedia Structural Integrity, 37(C), 738–745. https://doi.org/10.1016/j.prostr.2022.02.004
Valvez, Sara, Reis, P. N. B., & Ferreira, J. A. M. (2023). Effect of annealing treatment on mechanical properties of 3D-Printed composites. Journal of Materials Research and Technology, 23, 2101–2115. https://doi.org/10.1016/j.jmrt.2023.01.097
Vanaei, H. R., Raissi, K., Deligant, M., Shirinbayan, M., Fitoussi, J., Khelladi, S., & Tcharkhtchi, A. (2020). Toward the understanding of temperature effect on bonding strength, dimensions and geometry of 3D-printed parts. Journal of Materials Science, 55(29), 14677–14689. https://doi.org/10.1007/s10853-020-05057-9
Vindokurov, I., Pirogova, Y., Tashkinov, M., & Silberschmidt, V. V. (2022). Effect of Heat Treatment on Elastic Properties and Fracture Toughness of Fused Filament Fabricated PEEK for Biomedical Applications. Polymers, 14(24). https://doi.org/10.3390/polym14245521
Vorkapić, M., Mladenović, I., Ivanov, T., KovaÄević, A., Hasan, M. S., Simonović, A., & Trajković, I. (2022). Enhancing mechanical properties of 3D printed thermoplastic polymers by annealing in moulds. Advances in Mechanical Engineering, 14(8), 1–15. https://doi.org/10.1177/16878132221120737
Wach, R. A., Wolszczak, P., & Adamus-Wlodarczyk, A. (2018). Enhancement of Mechanical Properties of FDM-PLA Parts via Thermal Annealing. Macromolecular Materials and Engineering, 303(9), 1800169. https://doi.org/10.1002/mame.201800169
Wang, G., Zhang, D., Li, B., Wan, G., Zhao, G., & Zhang, A. (2019). Strong and thermal-resistance glass fiber-reinforced polylactic acid (PLA) composites enabled by heat treatment. International Journal of Biological Macromolecules, 129, 448–459. https://doi.org/10.1016/j.ijbiomac.2019.02.020
Yu, W., Wang, X., Ferraris, E., & Zhang, J. (2019). Melt crystallization of PLA/Talc in fused filament fabrication. Materials & Design, 182, 108013. https://doi.org/10.1016/j.matdes.2019.108013
Yu, W., Wang, X., Yin, X., Ferraris, E., & Zhang, J. (2023). The effects of thermal annealing on the performance of material extrusion 3D printed polymer parts. Materials and Design, 226, 111687. https://doi.org/10.1016/j.matdes.2023.111687
Downloads
Published
Issue
Section
License
Authors who publish with this journal agree to the following terms:
The journal allow the authors to hold the copyright without restrictions and allow the authors to retain publishing rights without restrictions.
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
This work is licensed under a Creative Commons Attribution 4.0 International License.