Analisis Temperature Temper dan Cooling Rate Terhadap Sifat Mekanik Baja Paduan Rendah
DOI:
https://doi.org/10.36499/jim.v19i2.9507Keywords:
Temperature Temper, cooling rate, baja paduan rendahAbstract
Penelitian ini bertujuan untuk menganalisis pengaruh temperature temper (TT) dan cooling rate (CR) terhadap sifat mekanik baja paduan rendah. Metode yang digunakan dalam penelitian ini adalah metode eksperimen yang meliputi pengumpulan data, analisis data dengan menggunakan korelasi pearson dan regresi linear. Kemudian dilihat nilai R-squared untuk mengevaluasi seberapa baik model regresi menjelaskan variasi dari variabel terikat. Hasil penelitian menunjukkan bahwa terdapat korelasi negatif yang cukup lemah antara TT dan YS/UTS, korelasi positif yang cukup lemah antara TT dengan EL/RA, dan korelasi positif yang cukup kuat dengan IS. Dari hasil koefisien regresi linear menunjukkan bahwa semakin tinggi TT maka akan semakin rendah sifat mekanik baja paduan rendah YS dan UTS. Namun, hasil regresi linear dengan CR menunjukkan bahwa semakin tinggi CR maka sifat mekanik baja paduan rendah YS dan UTS akan meningkat dan CR akan menurunkan sifat mekanik baja paduan rendah EL/RA/IS.
References
Greida Frista, Hamdan Akbar Notonegoro, Hasanudin Gufron Fachrudin. Peningkatan Sifat Mekanik AISI 4130 Low Alloy Steel Melalui Perlakuan Panas, Flywheel: Jurnal Teknik Mesin Untirta Vol. III, No. 2, Oktober 2017, hal. 15 – 19
Morini, A.A.; Ribeiro, M.J.; Hotza, D. Early-stage materials selection based on embodied energy and carbon footprint. Mater. Des. 2019, 178, 107861.
Jang, Changheui, et al. Mechanical property variation within Inconel 82/182 dissimilar metal weld between low alloy steel and 316 stainless steel. International Journal of Pressure Vessels and Piping, 2008, 85.9: 635-646.
Haryadi, Gunawan Dwi. Pengaruh suhu tempering terhadap kekerasan, kekuatan tarik dan struktur mikro pada baja K-460. Rotasi, 2006, 8.2: 1-8.
Aziz, Esam M.; Kodur, Venkatesh K. Effect of temperature and cooling regime on mechanical properties of highâ€strength lowâ€alloy steel. Fire and Materials, 2016, 40.7: 926-939.
Wei, j., chu, x., & sun, x. Y. (2019). Machine learning in materials science. InfoMat, 1(3), 338–358. https://doi.org/10.1002/inf2.12028.
Merayo Fernández, David; RodrÃguez-Prieto, Alvaro; Camacho, Ana MarÃa. Prediction of the bilinear stress-strain curve of aluminum alloys using artificial intelligence and big data. Metals, 2020, 10.7: 904.
Xiao, Chengwei, et al. Using Spearman's correlation coefficients for exploratory data analysis on big dataset. Concurrency and Computation: Practice and Experience, 2016, 28.14: 3866-3878.
Reddy, N. S., et al. Modeling medium carbon steels by using artificial neural networks. Materials Science and Engineering: A, 2009, 508.1-2: 93-105
Bolboaca, Sorana-Daniela; Jäntschi, Lorentz. Pearson versus Spearman, Kendall’s tau correlation analysis on structure-activity relationships of biologic active compounds. Leonardo Journal of Sciences, 2006, 5.9: 179-200.
Zou, Kelly H.; Tuncali, Kemal; Silverman, Stuart G. Correlation and simple linear regression. Radiology, 2003, 227.3: 617-628.
Downloads
Published
Issue
Section
License
Authors who publish with this journal agree to the following terms:
The journal allow the authors to hold the copyright without restrictions and allow the authors to retain publishing rights without restrictions.
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
This work is licensed under a Creative Commons Attribution 4.0 International License.