Main Article Content

Abstract

Cayene pepper is national strategic vegetable commodity which is widely consumed by Indonesian. National pepper consumption has increased in line with increasing population so the production and quality of pepper need to be increased for creating national food security. Increasing the production and quality can be achieved through assembling superior varieties using mutation. The objective of this research are to evaluate the  growth response in early stages of two varieties cayenne pepper irradiated using gamma-ray mutagen and determine the optimal dose of gamma-rays that will increase the frequency of mutant occurrence. This study was conducted in May-July 2023 at the nursery in Wedomartani, Sleman using two factor completely randomized design, namely variety (Ori 212 and Caliber) and doses of gamma irradiation (0, 100, 200, 300, 400, and 500 Gy). Our finding showed that growth of cayenne pepper in the early stages was influenced by the interaction between varieties and doses of gamma-ray irradiation. Gamma rays irradiation by using 100 Gy and 200 Gy at Ori 212 variety and the Caliber variety at dose 100 Gy gave positive response to plant growth at early stage compared to controls. At doses of 400 and 500 Gy gamma rays on the Ori 212 variety, the germinated plants were unable to grow and the plants died. The recommended dose of gamma rays that would increase the frequency of occurrence of mutants were 249.97 – 288.48 Gy for the Ori 212 variety and dose of 383.29 – 521 Gy for the Caliber variety.

Article Details

References

  1. Afghani, F. (2022). Mutan Potensial pada Pertumbuhan Tanaman Krisan dengan Iradiasi Sinar Gamma. Prosiding Seminar Nasional Pembangunan Dan Pendidikan Vokasi Pertanian, 3(1), 537–545. https://doi.org/10.47687/snppvp.v3i1.337
  2. Arumingtyas, E. L., & Ahyar, A. N. (2022). Genetic diversity of chili pepper mutant ( Capsicum frutescens L.) resulted from gamma-ray radiation. IOP Conference Series: Earth and Environmental Science, 1097(1). 1-11 https://doi.org/10.1088/1755-1315/1097/1/012059
  3. Badan Pusat Statistik [BPS]. (2022). Statistik Hortikultura 2021 (H. dan P. Direktorat Statistik Tanaman Pangan, Ed.). BPS-RI.
  4. Chakraborty, S., Mahapatra, S., Hooi, A., Ali, M. N., & Satdive, R. (2023). Determination of Median Lethal (LD50) and Growth Reduction (GR50) Dose of Gamma Irradiation for Induced Mutation in Wheat. Brazilian Archives of Biology and Technology, 66. 1-10 https://doi.org/10.1590/1678-4324-2023220294
  5. Damayanti, F. (2021). Potensi pemuliaan mutasi radiasi sebagai upaya peningkatan variasi genetik pada tanaman hias. EduBiologia, 1(2), 78–84. https://doi.org/http://10.30998/edubiologia.v1i2.9300
  6. Due, M. S., Yunus, A., & Susilowati, A. (2019). Keragaman pisang (Musa spp.) hasil iradiasi sinar gamma secara in vitro berdasarkan penanda morfologi. PROS SEM NAS MASY BIODIV INDON, 5(2), 347–352. https://doi.org/10.13057/psnmbi/m050236
  7. Galves Marroquin, L. A., Maldonado-Mendez, J. de J., Guerra-Medina, C. E., Avendano-Arrazate, C. H., Gomez-Simuta, Y., & Monterrosa-del Toro, A. (2023). LD50 and GR50 Estimation with Gamma Rays (69 Co) in Arachis pintoi Var. amarillo. Agro Productividad, 16(3), 151–157. https://doi.org/10.32854/agrop.v16i3.2503
  8. Handayani, B. R., Kartikaningtyas, D., Setyaji, T., & Sunarti, S. (2018). Keragaman genetik jenis introduksi Acacia auriculiformis pada uji keturunan generasi kedua di Gunungkidul, Yogyakarta. PROS SEM NAS MASY BIODIV INDON, 4(1), 47–51. https://doi.org/http://10.13057/psnmbi/m040107
  9. Harsanti, L., & Yulidar, Y. (2019). Pertumbuhan varietas kedelai (Glycine max (L.) Merill) Pada generasi M2 dengan teknik mutasi. Jurnal Sains Dan Teknologi Nuklir Indonesia, 20(1), 1–8. https://doi.org/10.17146/jstni.2019.1.1.4104
  10. Insani, P. P., Anwar, S., & Karno, D. (2022). Radiosensitivitas dan Pengaruh Radiasi Sinar Gamma terhadap Pertumbuhan dan Produksi Tomat (Solanum lycopersicum L.) Radiosensitivity and Effect of Gamma Radiation Dose on Growth and Production of Tomato (Solanum lycopersicum L.). Journal Agroeco Science, 1(1), 11–19.
  11. International Energy Atomic Agency, [IAEA]. (2020). Mutant Variety Database. https://nucleus.iaea.org/sites/mvd/SitePages/Home.aspx
  12. Kurniajati, W., Sobir, & Aisyah, S. I. (2020). Penentuan Dosis Iradiasi Sinar Gamma dalam Meningkatkan Keragaman untuk Perbaikan Karakter Kuantitatif Bawang Merah (Allium cepa var. aggregatum). Jurnal Ilmiah Aplikasi Isotop Dan Radiasi, 16(2), 83–90.
  13. Kurniajati, W. S., Sobir, & Aisyah, S. I. (2020). Penentuan Dosis Iradiasi Sinar Gamma dalam Meningkatkan Keragaman untuk Perbaikan Karakter Kuantitatif Bawang Merah (Allium cepa var. aggregatum) Determination of Gamma Irradiation Dose to Increase Variability for Improvement of Quantitative Traits in Shallot (Allium cepa var. aggregatum). Jurnal Ilmiah Aplikasi Isotop Dan Radiasi, 16(2), 83–90.
  14. Layek, S., Pramanik, S., Das, A., Gupta, A. K., Bhunia, A., & Pandit, M. K. (2022). Effect of gamma radiation on seed germination and seedling growth of snake gourd (Trichosanthes anguina L.). South African Journal of Botany, 145, 320–322. https://doi.org/10.1016/j.sajb.2021.07.039
  15. Majeed, A., Muhammad, Z., Ullah, R., & Ali, H. (2018). Gamma Irradiation I: Effect On Germination And General Growth Characteristics Of Plants-A Review. In Pak. J. Bot 50(6). 2449-2453.
  16. Makhziah, M., & Soedjarwo, D. P. (2023). Radiosensitivity of Two Local Chili Varieties to Gamma Rays. Jurnal Teknik Pertanian Lampung (Journal of Agricultural Engineering), 12(2), 423-430. https://doi.org/10.23960/jtep-l.v12i2.
  17. Monikasari, I. N. S., Anwar, S., & Kristanto, B. A. (2018). KERAGAMAN M1 TANAMAN HIAS BUNGA MATAHARI (Helianthus Annuus L.) AKIBAT IRADIASI SINAR GAMMA. Journal of Agro Complex, 2(1), 1. https://doi.org/10.14710/joac.2.1.1-11
  18. Paul Ernest, F., Hortense Noëlle, M. A., Godswill, N. N., Thiruvengadam, M., Albert Simon, O., Hermine Bille, N., Joseph Martin, B., Rebezov, M., & Shariati, M. A. (2020). Radiosensitivity of two varieties of watermelon (Citrullus lanatus) to different doses of gamma irradiation. Revista Brasileira de Botanica, 43(4), 897–905. https://doi.org/10.1007/s40415-020-00659-8
  19. Pramanik, B., Debnath, S., Rahimi, M., Helal, Md. M. U., & Hasan, R. (2023). Morphometric frequency and spectrum of gamma-ray-induced chlorophyll mutants identified by phenotype and development of novel variants in lentil (Lens culinaris Medik.). PLOS ONE, 18(6), e0286975. https://doi.org/10.1371/journal.pone.0286975
  20. Purba, D. P., Husni, A., Kosmiatin, M., & Purwito, A. (2022). Induksi Keragaman dengan Radiasi Sinar Gamma Pada Jeruk Siam Banyuwangi (Citrus Nobilis (L.)) Secara In Vitro. Ciwal Jurnal Pertanian, 1(1), 1–13.
  21. Sa’diyah, N., Handayani, M., Karyanto, A., & Rugayah. (2018). Pengaruh iradiasi sinar gamma pada benih terhadap pertumbuhan cabai merah (Capsicum annum L.). Prosiding Seminar Nasional Fakultas Pertanian Universitas Jambi, 119–130.
  22. Shrivastava, R., Mondal, S., Patel, N. B., Purkayastha, S., & Linthoingambi Devi, Y. (2021). Standardization of GR 50 dose of gamma rays for mutation breeding experiments in safflower (Carthamus tinctorious L.). Indian J. Genet, 81(3), 474–477. https://doi.org/10.31742/IJGPB.81.3.17
  23. Shu, Q. Y., Forster, B. P., & Nakagawa, H. (2012). Plant Mutation Breeding and Biotechnology. CABI and FAO.
  24. Suryani, R., & Owbel. (2019). Pentingnya eksplorasi dan karakterisasi tanaman pisang sehingga sumber daya genetik tetap terjaga. Agricultural Journal, 2(2), 64–76. https://ejournal.unipas.ac.id/index.php/Agro/article/view/410
  25. Tarigan, R., Hanafiah, D. S., & Sinurya, M. (2021). Radio-sensitivity test of gamma irradiation of local chilli pepper seeds (Capsicum annum L.). IOP Conference Series: Earth and Environmental Science, 782(4), 1–6. https://doi.org/10.1088/1755-1315/782/4/042034
  26. Tias, A. S. N., Moeljani, I. R., & Guniarti, G. (2022). Effect of gamma ray radiation 60Co generation M1 on growth and production of cayenne pepper (Capsicum frutescens L) prentul kediri variety. Nusantara Science and Technology Proceedings, 84–92. https://doi.org/10.11594/nstp.2022.2011
  27. Ulinnuha, Z., Farid, N., & Imastini Dinuriah. (2022). Radiosensitivitas dan Perkecambahan Cabai (Capsicum Chinense) Orange Chupetinho Pada Berbagai Dosis Irradiasi Sinar Gamma. Pengembangan Sumber Daya Perdesaan Dan Kearifan Lokal Berkelanjutan XII, 304–308.
  28. Utomo, S. D., Hidayat, K. F., Edy, A., Sa’diyah Nyimas, Indriyani, R., Halimaturosidah, E., & Yustina, H. (2021). Hibridisasi buatan kacang tanah dan fenotipe karakter tipe pertumbuhan, ukuran polong, dan jumlah biji per polong tanaman F1 hasil hibridisasi. Jurnal Agrotropika, 20(1), 49–57. https://jurnal.fp.unila.ac.id/index.php/JAT/article/view/4886/pdf
  29. Wahyuni, S., Siregar, H.-M., Isnaini, Y., Widiarsih, S., & Dwimahyani, I. (2022). Keragaman Morfologi Hibrid Begonia sageaensis Wiriad. X Begonia galeolepis Ardi & D.C. Thomas Hasil Iradiasi Sinar Gamma. Buletin Kebun Raya, 25(1), 22-33. https://doi.org/10.55981/bkr.2022.743
  30. Wanga, M. A., Shimelis, H., Horn, L. N., & Sarsu, F. (2020). The effect of single and combined use of gamma radiation and ethylmethane sulfonate on early growth parameters in sorghum. Plants, 9(827). 1-15. https://doi.org/10.3390/plants9070827