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Abstract 

Reynolds lubrication theory assumes that there is no-slip boundary on the interfaces between 
solid and lubricant. However, during the past few years, slip boundary has been observed in 
micro/nanometer gap. In this paper, numerical studies of the Reynolds model with slip 
boundary are presented for investigating the effect of slip boundary on the pressure 
distribution  in sliding contact. The modified Reynolds equation is solved numerically by finite 
difference method with alternating direction implicit algorithm. Line by line algorithm was 
applied to overcome multidimensional direction. The simulation results indicate that the two-
dimensional modified Reynolds equation can predict the dynamic of lubrication process with 
boundary slip in sliding contact. 
Keywords : Slip boundary, finite difference method, hydrophobic, hydrophilic 

 
Introduction 

For hundreds of years, the classical lubrication mechanics in both scientific research and 
engineering application has been based on the frame of the Reynolds equation with no-slip 
assumption, i.e. the fluid velocity matches the velocity of the boundary solid. While the generally-
accepted no-slip boundary condition has been validated experimentally for a number of 
macroscopic flow, it remains that the assumption is not based on the physical principles. The 
success of applying the no-slip boundary condition to many engineering areas cannot reflect the 
accuracy of the boundary condition but may reflect the insensitivity of an experiment to the partial-
slip boundary condition (Craig et al., 2001).  

A small amount of boundary slip might not dramatically affect the macroscopic 
measurement of fluid flow. However, a partial or large slip might have large influence on the 
micro/nano-scale flows. Recently, several researchers have suggested that the no-slip boundary 
condition may not be suitable at both the micro- and nano- scale (Craig et al., 2001, Pit et al., 2000, 
Zhu and Granick, 2001, Tretheway and Meinhart, 2002). It indicates the proper condition depends 
both on the characteristic length scale of the flow and the chemical and physical properties of the 
solid surface. During recent years, with the advancement of the experimental techniques, such as 
nano-particle image velocimetry (NPIV), atomic force microscope (AFM) and surface force 
apparatus (SFA), boundary slip  of a liquid occurs not only at hydrophobic surface (Craig et al., 
2001, Pit et al., 2000, Zhu and Granick, 2001), but also at a hydrophilic surface (Bonaccurso et al., 
2003). Boundary slip  occurs not only in a polymer flow (Wu and Ma, 2005), but also in a 
hydrodynamic (Kaneta et al., 1990) and elastohydrodynamic (Cieplak et al., 2001) lubrication. 
Therefore, the slip evidence has been generally accepted and for certain cases the no-slip boundary 
condition is not valid. 

In relation to the slip boundary, for nearly two hundred years ago, Navier's hypothesis 
(Navier, 1823) proposed that the velocity is proportional to the shear rate at the wall with the slip 
length, β , a constant.  

 

y
uus ∂
∂

= βη  (1) 

If β = 0 the generally assumed no-slip boundary condition is obtained. If β = finite, fluid 
slip occurs at the wall, but its effect depends upon the length scale of the flow. The boundary 
condition is evaluated at the surface. The slip length is the distance behind the interface at which 
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the liquid velocity extrapolates to zero. For a pure shear flow, the slip length β  can be interpreted 
as the fictitious distance below the surface where the no-slip boundary condition would be satisfied 
(Fig. 1).  

 
Fig. 1. Interpretation of the slip length, β  (Lauga et al., 2007). 

Application of slip may not be restricted to the small in scale, but can be applied to the 
wider area. Salant and Fortier (2005) conducted a numerical analysis of a finite slider bearing with 
a heterogeneous slip/no-slip surface by means a modified slip length model and found that such a 
bearing can provide a high load support but low friction drag. Wu and Sun (2006) presented a 
general numerical method for the numerical solution of wall slip and free boundary condition using 
a finite element method together with a quadratic programming technique. It was found that the slip 
boundary dramatically affects generation of the hydrodynamic pressure. Large slip even causes a 
null hydrodynamic pressure in a sliding contact. Generally speaking, the slip boundary plays an 
important role in hydrodynamic pressure generation of the fluid in a solid gap with relative motion 
at both the macro- and micro-scale. 

In the present study, the investigation of the slip boundary phenomenon is examined by 
means of a numerical analysis using alternating direction method. The focus of the analysis is the 
effect of the slip boundary on the pressure distribution in hydrodynamic lubrication. In order to 
simulate the pressure distribution, a computer code has been developed using the set of equations in 
the following section. 

  
Mathematical model 

The derivation of classical Reynolds equation is based on the assumption of no-slip between 
the lubricant and the contacting surfaces, i.e., the lubricant velocities at the surfaces are set equal to 
the surface velocities. In this paper, the governing equation for a liquid film in the two-dimensional 
flow, taking account of the slip boundary, could be derived. The following assumptions in order to 
simplify the mathematical modeling and computation in micro-gap are used in the present analysis. 
They are (1) the fluid is Newtonian, (2) the fluid flow in the film region is laminar, (3) inertial 
forces are negligible compared to viscous terms, (4) the body forces are assumed to be absent, (5) 
viscosity is constant, and (5) the pressure is constant across the film thickness. The result is a 
modified version of the Reynolds equation. This equation can be written as follow: 
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or, in dimensionless form 
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Since full film condition are assumed, the entire load per width unit is carried by lubricant 

film and the calculation is simply an integration of the lubricant film pressure. The load carrying 
capacity is defined as the integral of the pressure profile over the surface area, and in terms of 
dimensionless quantities: 

 

∫ ∫=
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),(ˆˆ dYdXYXPW  (4) 

Numerical Procedure 
The physical configuration of the problem under consideration is shown in the Fig. 2. The 

lower surface without slip moves with a sliding velocity uw. Surface 2 is the stationary surface. The 
slip boundary is applied everywhere on surface 2.  

 

 
 

Fig. 2. Schematic of a sliding micro-gap with slip boundary 
 
In this study, the height of the fluid film separating the two surfaces, is assumed to be a 

linear function of x. The fluid through the converging wedge can result in hydrodynamic pressure 
generation. The top surface, labeled as Surface 2 in Fig. 4 is stationary while the bottom surface, 
Surface 1, is moving at a sliding speed, uw. In the present model the pressure is assumed as 
atmospheric pressure on all external edges. 

The fluid velocity in the upper surface is proportional to the surface shear stress. The 
relevant boundary conditions for the velocity components are: 

 
(1)  at the lower surface (z = 0)  ux = uw ,                          uy = 0 

(2) at the upper surface (z = h)       
,z

u
u x

x ∂
∂

−= βη ,            
z

u
u y

y ∂
∂

−= βη        

where β  is the slip length. If the slip length is set equal to zero the above boundary condition 
reduces to the traditional no-slip case. 

By employing the discretization scheme, the computed domain are divided into a number 
control volumes using a grid with uniform mesh size, ∆X and ∆Y. The calculational domain is 0 ≤ X 
≤ Lx and 0 ≤ Y ≤ Ly. The mesh size is ∆X = Lx/n  and ∆Y = Ly/n , and n+1 is the number of grid 
points. The uniform grid is applied on slip face surface. The 50 x 50 meshes are employed in the 
computational domain. The grid independency was validated by various numbers of size meshes. 
Whether the meshes number was above 50 x 50, the simulation results were almost the same. But 
obviously the computational cost increased. Considering the processing time limitation, 50 x 50 
meshes was adopted for all simulation cases. 
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Solution of Algebraic Equation  
The dimensionless Reynolds equation, Eq. (3) is solved numerically using finite difference 

equations. The modified Reynolds equation is discretized using a first order central difference and 
solved using the alternating direction implicit method (ADI). In this method one line of nodes is 
examined at time, while nodes on neighboring lines are assumed to be known values and remain 
constant (Fig. 3). The problem along a single line can be solved with a Tri-Diagonal Matrix 
Algorithm (TDMA). The solution proceeds along all lines in one direction then switches to lines in 
the perpendicular direction (Versteg and Malalasekera, 1995). 

 
 
 
     Points at which values are calculated. 
    Points at which values are  
   considered to be temporarily known 
  x   Known boundary values 
   
 
 

 
 

Fig. 3. Sweeping representation of the line by line method 
 
Results and Discussions 

Computations have been made for a sliding micro-gap with slip or no-slip surface. The 
below figure contains pressure distribution for a micro-gap with a dimensionless length to width 
ratio Lx/Ly =1, dimensionless slip length B = 100, and dimensionless sliding velocity U = 100. Fig 
4(a) shows the pressure distribution for the no-slip surface, while Fig. 4(b) shows the pressure 
distribution for the surface 2 with slip applied. The load carrying capacity, W  computed for the 
no-slip boundary is 0.6258. For a surface of the same configuration but with any slip (B = 100) the 
corresponding load support is 0.3120. In this instance, the load support gained by the addition of 
slip decrease about in half compared to that of the no-slip surface. This result is in a good 
agreement with the works of Wu & Sun (20). They found that the slip boundary produces a low 
hydrodynamic pressure in lubrication film. It also indicates that the hydrodynamic of a lubrication 
film between two poorly wetting (hydrophobic) surfaces is entirely different from between two no-
slip surfaces. The slip boundary shows a disadvantage over the surface if applied everywhere on 
the surface. 

ˆ

 
 

Fig. 4. Pressure distribution for (a) no-slip analysis, (b) slip boundary analysis 
In this study, the effect of changing driving velocity is also evaluated with respect to the 

load carrying capacity, W (Eq. 4). Figure 5 shows the effect of changing the dimensionless sliding 
velocity, U, on the load carrying capacity. Load is found to have a linear variation with velocity. 
When sliding velocity is absent (U = 0), there is zero load support for two configurations. The load 
carrying capacity supported by the surface with slip boundary shows a lower load than those 
without slip. It achieves a load carrying capacity that is 0.5 times that of the surface with the no-slip 
boundary.  
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Fig. 5. Effect of the sliding velocity on the load carrying capacity 

 
Conclusions 

Set of partial differential equations of modified Reynolds equation can be solved 
numerically by using finite difference method with alternating direction implicit methods (ADI) 
algorithm. Line by line method for sweeping of multidimensional direction can successfully give 
solution of algebraic equations. Numerical studies reported in this paper show that the 
hydrodynamic of a lubrication film confined between a no-slip surface and a slip surface differs 
entirely from that of the film confined between two no-slip surfaces. It is found that a slip boundary 
produces lower hydrodynamic pressure in a lubricant film between two solid surfaces. The 
hydrodynamic of the lubrication film between slip surfaces may bring us a new idea in both the 
scientific research and engineering design for MEMS (micro-electro-mechanical system) and 
micro-fluidic based devices. There is a need to make an optimized heterogeneous pattern for wider 
MEMS application. 
 
Nomenclature 

β  = slip length 
η  = viscosity 
h = film thickness 
L = aspect ratio, Lx/Ly 
Lx = length of surface in x-direction 
Ly = length of surface in y-direction 

uw =  sliding velocity of moving 
surface 
ux =  X component of velocity 
uy = Y component of velocity 
p =  pressure 
pa = atmospheric pressure 
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