PENDETEKSIAN FORMALIN PADA BAHAN PANGAN DENGAN SENSOR GAS BERBASIS POLIMER MENGGUNAKAN METODE JARINGAN SYARAF TIRUAN

Budi Gunawan 1*, Arief Sudarmadji 2

Jurusan Teknik Mesin, Fakultas Teknik, Universitas Muria Kudus
 Jl. Gondang Manis, PO BOX 53, Kudus 59324
Jurusan Teknologi Pangan, Fakultas Pertanian, UNSOED Purwokerto
 Jl. Mayjen Sungkono Blater Km 5. Purbalingga
 *Email: budi.gunawan13@yahoo.com

Abstrak

Penelitian ini dimaksudkan untuk memperoleh sistem pendeteksi formalin dalam bahan pangan berdasarkan pengukuran uap/aroma menggunakan deret sensor berbahan komposit polimer-karbon, Tujuan penelitian ini diantaranya; (i) memperoleh unit deret sensor berbahan komposit polimer-karbon beserta atributnya untuk deteksi formalin, (ii) mendapatkan perlakuan bahan pangan optimum untuk deteksi formalin, (iii) mengembangkan sistem deteksi formalin menggunakan metode jaringan syaraf tiruan, dan (iv) mengetahui performansi sistem deteksi formalin. Metode yang akan digunakan dalam penelitian ini adalah; (i) membuat sensor gasdari bahan komposit polimer-karbon. Sensor yang terbentuk akan dikaji komposisi polimer dan tegangan eksitasi terhadap sensitifitasnya. Selain itu akan dikaji pula pengaruh pemanasan pada bahan pangan terhadap sensitifitas sensor. Parameter pengujian yang digunakan adalah resistansi dan tegangan keluaran sensor, (ii) membuat rangkaian akuisisi data untuk menguji sensor dalam mendeteksi bahan makanan, (iii) membuat software deteksi menggunakan metode Jaringan Syaraf Tiruan (JST), sensor-sensor yang terpilih akan digunakan sebagai masukan pada jaringan syaraf tiruan untuk dilakukan pembelajaran pola keluarannya agar dapat dikenali. Diujikan beberapa metode pembelajaran agar diperoleh pendeteksian yang optimum. Parameter performansi yang digunakan adalah tingkat keberhasilan dan waktu deteksi (iv) menguji beberapa sampel bahan makanan di laboratorium pangan.

Kata kunci: polimer, sensor, gas, formalin, resistansi

1. PENDAHULUAN

Isu maraknya penyalahgunaan zat berbahaya formalin sebagai pengawet dalam bahan pangan dan kesulitan masyarakat dalam mengidentifikasi ciri keberadaannya secara inderawi membuat masyarakat resah dan dirugikan. Hal ini menuntut dibutuhkannya alat yang dapat mendeteksi secara cepat, akurat dan mudah pengoperasiannya sebagai indikator keberadaan formalin dalam bahan pangan. Meskipun formalin dikategorikan dalam jenis bahan tambahan terlarang digunakan dalam makanan seperti tertuang di Peraturan Menteri Kesehatan No. 1168/Menkes/PER/X/1999 (Bulletin Service, 2006) dan berbagai dampak buruk yang ditimbulkannya bagi tubuh manusia, penyalahgunaan formalin masih sering dilakukan oleh produsen bahan pangan. (Djauhari, 2008).

Secara inderawi tanda-tanda formalin dalam bahan pangan masih sulit diidentifikasi, sedangkan bila menggunakan seperti analisis laboratorium yang membutuhkan bahan-bahan khusus/pereaksi kimia dan prosedur tertentu (seperti reagent aquamerck, reagent schiff dan analisa spektofotometer) juga sulit. Secara teknis, formalin (No. HS2912.11.00.00) merupakan larutan yang tidak berwarna dengan bau yang sangat tajam. Di dalam formalin terkandung sekitar 37% formaldehyde dalam air sebagai pelarut. Biasanya di dalamformalin juga terdapat bahan tambahan berupa methanol hingga 15% sebagai pengawet (Media Industri, 2006).

Belum tersedianya sensor gas yang spesifik untuk pengukuran formalin, maka prinsip penciuman elektronik (*electronic nose*) dapat diterapkan dalam deteksi formalin. Deret sensor yang mempunyai selektifitas dan sensitifitas terhadap formalin akan digunakan sebagai pengindera, untuk selanjutnya diekstraksi ciri dan dikenali polanya untuk identifikasi.

Salah satu bahan yang peka terhadap beberapa gas adalah komposit polimer-karbon. Komposit polimer-karbon mempunyai karakteristik resistansi yang berubah apabila terkena gas karena mampu mengikat molekul-molekul gas yang dideteksinya sehingga mempengaruhi sifat

konduktifitasnya (Gunawan, 2010). Kelebihan dari penggunaan bahan polimer adalah dapat mengatur komposisi polimer dan karbon agar diperoleh karaKteristik yang peka terhadap zat tertentu, seperti formalin. Keberadaan formalin dalam bahan pangan akan mempengaruhi uap gas yang dikeluarkan, maka dengan mengukur uap yang mengalir secara natural atau melalui perlakuan pemanasan bahan pangan, keluaran deret sensor terpilih dapat mengindikasikan ada tidaknya formalin dalam bahan pangan dengan cara penciuman elektronik. Dalam penelitian ini akan dibuat sensor dari bahan polimer yang dikompositkan dengan karbon aktif dan digunakan untukmendeteksi formalin dalam bahan makanan menggunakan metode Jaringan Syaraf Tiruan (JST).

2. METODOLOGI

2.1 Tempat Penelitian

Penelitian ini dilakukan di 3 (tiga) lokasi/laboratorium, yaitu: (1) Laboratorium Elektronika Industri Jurusan Teknik Elektro ITS Surabaya, (2) Laboratorium Pengukuran Analog Jurusan Teknik Elektro Universitas Muria Kudus (UMK), dan (3) Laboratorium Teknologi Pangan UNSOED Purwokerto.

2.2 Tahapan Kegiatan

Penelitian ini dilaksanakan dengan beberapa tahapan kegiatan, diantaranya;

Kegiatan 1; membuat sensor gas berbahan polimer

Kegiatan 2; membuat instrumentasi pengujian untuk mengkarakterisasi sensor

Kegiatan 3; membuat chamber yang akan digunakan untuk pengujian bahan pangan

Kegiatan 4; merancang rangkaian akuisisi untuk pembacaan hasil pengukuran ke komputer

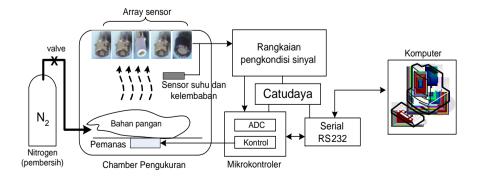
Kegiatan 5; medesain software jaringan syaraf tiruan (JST) pendeteksi formalin berbasis PC

Kegiatan 6; mentraining software JST dengan data hasil pengujian beberapa komoditas bahan pangan.

2.3 Jenis Polimer

Bahan polimer yang akan digunakan ada 6 macam, yaitu

- 1. PEG6000,
- 2. PEG20M.
- 3. PEG1540
- 4. PEG200.
- 5. Silicon, dan
- 6. Squelene


2.4 Jenis Sampel

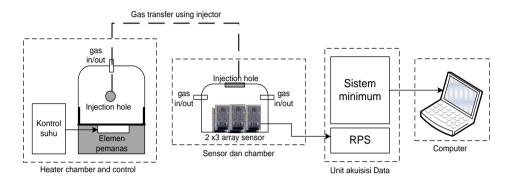
Sampel yang akan digunakan ada 3 macam bahan makanan, yaitu

- 1. Mie basah,
- 2. Tahu.
- 3. Bakso

2.5 Blok Diagram Sistem Pengukuran Resistansi Sensor

Blok diagram sistem pengukuran ditunjukan sebagai berikut;

Gambar 1. Diagram sistem pengukuran resistansi sensor


2.6 Perangkat Lunak

Perangkat lunak dalam penelitian ini dibuat menggunakan program visual basic 6.0. Perangkat lunak yang dibuat antara lain: sistem akuisisi data, Training JST dan Identifikasi.

3. HASIL DAN PEMBAHASAN

3.1 Perangkat Keras Sistem

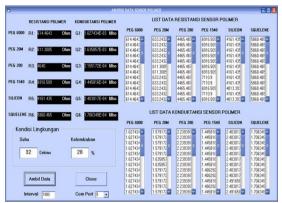
Diagram perangkat keras pengukuran terlihat dalam Gambar.

Gambar 2. Setup pengukuran uap/gas bahan pangan

3.2 Sensor dan Chamber Pengujian

b. Sensor polimer

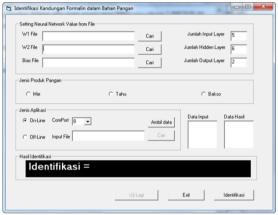
c. Deret sensor


Gambar 3. Sensor dan deret sensor polimer



Gambar 4. Chamber pengujian

3.3 Tampilan Perangkat Lunak


Perangkat lunak dibuat menggunakan program visual basic 6.0. Perangkat lunak yang dibuat antara lain: sistem akuisisi data, Training JST dan Identifikasi. Adapun tampilan software sebagai berikut;

a. Perangkat lunak akuisisi data 6 sensor polimer

b. Perangkat lunak training JST

c. Perangkat lunak identifikasi

Gambar 5. Tampilan perangkat lunak

3.4 Hasil Pengujian

Setelah dilakukan pengujian terhadap ke tiga sampel, didapat hasil identifikasi sebagai berikut;

Tabel 1. Rekap hasil pengujian identifikasi

No	Komoditas	Kandungan	Kondisi	Pengujian	Identifikasi	% Hasil
1	Bakso	Tanpa Formalin	Tanpa pemanas	1	Sesuai	100%
				2	Sesuai	
				3	Sesuai	
			Pemanas 40 ⁰ C	1	Sesuai	
				2	Sesuai	
				3	Sesuai	
			Pemanas 50 ⁰ C	1	Sesuai	
				2	Sesuai	
				3	Sesuai	
			Pemanas 60 ⁰ C	1	Sesuai	
				2	Sesuai	
				3	Sesuai	
		Tanpa Formalin	Tanpa pemanas	1	Sesuai	100%
				2	Sesuai	
				3	Sesuai	
			Pemanas 40 ⁰ C	1	Sesuai	
				2	Sesuai	
				3	Sesuai	
			Pemanas 50°C	1	Sesuai	
				2	Sesuai	

No	Komoditas	Kandungan	Kondisi	Pengujian	Identifikasi	% Hasil
				3	Sesuai	
			Pemanas 60°C	1	Sesuai	
				2	Sesuai	
				3	Sesuai	
	Mie	Tanpa Formalin	Tanpa pemanas	1	Sesuai	100%
				2	Sesuai	
				3	Sesuai	
			Pemanas 40°C	1	Sesuai	
				2	Sesuai	
				3	Sesuai	
			Pemanas 50C	1	Sesuai	
				2	Sesuai	
				3	Sesuai	
			Pemanas 60°C	1	Sesuai	
				2	Sesuai	
2				3	Sesuai	
			Tanpa pemanas	1	Sesuai	100%
				2	Sesuai	
				3	Sesuai	
			Pemanas 40^{0} C	1	Sesuai	
				2	Sesuai	
				3	Sesuai	
		Tanpa Formalin		1	Sesuai	
			Pemanas 50 ^o C	2	Sesuai	
				3	Sesuai	
			Pemanas 60°C	1	Sesuai	
				2	Sesuai	
				3	Sesuai	
	Tahu	Tanpa Formalin	Tanpa pemanas	1	Sesuai	100%
				2	Sesuai	
				3	Sesuai	
			Pemanas 40°C	1	Sesuai	
				2	Sesuai	
				3	Sesuai	
			Pemanas 50 ^o C	1	Sesuai	
				2	Sesuai	
				3	Sesuai	
			Pemanas 60°C	1	Sesuai	
				2	Sesuai	
				3	Sesuai	
3		Tanpa Formalin	Tanpa pemanas	1	Sesuai	100%
				2	Sesuai	
				3	Sesuai	
				1	Sesuai	
			Pemanas 40 ^o C	2	Sesuai	
				3	Sesuai	
			Pemanas 50°C	1	Sesuai	
				2	Sesuai	
				3	Sesuai	
			Pemanas 60°C	1	Sesuai	
				2	Sesuai	
				3	Sesuai	

4. KESIMPULAN

- 1. Sensor berbahan polimer (*chemical sensor*) bisa digunakan sebagai sensor gas, khususnya dalam pengujian ini adalah gas formalin dengan memberi dopping karbon aktif menjadi komposit polimer-karbon
- 2. Dari enam jenis bahan polimer yang dibuat sensor; PEG6000, PEG20M, PEG1540. PEG200, silicon dan squelen mempunyai respon yang stabil terhadap gas formalin yang ada dalam bahan makanan, walaupun dari masing-masing sensor mempunyai besar resistansi yang berbeda antara satu dengan yang lain.
- 3. Sofware JST yang dibuat dengan visual basic v.6.0 bisa mendeteksi adanya formalin dalam bahan sampel dengan hasil pengujian mencapai 100%.

DAFTAR PUSTAKA

Albert, Lewis NS, Schauer CL, Sotzing GA, Stizel SE, Vaid TP, 2000. Cross-reactive chemical sensor arrays. Chem Rev, 100, pp.2595-2626.

Atkins, P. W. (1990), Physical Chemistry. 4th ed. New York: W.H. Freeman.

Department Of Chemical Engineering Brigham Young University (2006), Modeling And Data Analysis Of Conductive Polymer Composite Sensors.

Elias, H.-G. (1987), Mega Molecules. Berlin: Springer-Verlag

Frank Zee and Jack Judy (1999), Mems Chemical Gas Sensor Using A Polymer-Based Array, Published at Transducers '99 - The 10th International Conference on Solid-State ensors and Actuators on June 7-10, Sendai, Japan

Kohlman, R. S. and Epstein, Arthur J. (1998), Insulator-Metal Transistion and Inhomogeneous Metallic State in Conducting Polymers. Skotheim, Terje A.; Elsenbaumer, Ronald L., and Reynolds, John R., Editors. Handbook of Conducting Polymers. 2nd ed. New York: Marcel Dekker; pp. 85-122.

Jiri Janata And Mira Josowicz (2002), Conducting Polymers In Electronic Chemical Sensors.

Hua Bai and Gaoquan Shi (2006), Gas Sensors Based on Conducting Polymers.

MacDiarmid A G and Epstein A J. (1994), Frontiers of polymers and advanced materials, New York: Plenum Press